

Bernadette Sharp, Wiesław Lubaszewski
and Rodolfo Delmonte (eds)

Natural Language
Processing and
Cognitive Science

Proceedings 2015

Editors

Bernadette Sharp, Staffordshire University, U.K.
Wiesław Lubaszewski, Jagiellonian University, Poland
Rodolfo Delmonte, Ca’ Foscari University, Italy

Natural Language Processing and Cognitive Science
Bernadette Sharp, Wiesław Lubaszewski and Rodolfo Delmonte (eds)

© 2015 Libreria Editrice Cafoscarina

ISBN 978-88-7543-394-9

Libreria Editrice Cafoscarina
Dorsoduro 3259, 30123 Venezia
www.cafoscarina.it

Tutti i diritti riservati

Prima edizione luglio 2015

Contents

Preface 7

Hybrid Parsing for Human Language Processing 9
Philippe Blache

An Evaluation of AMIRA for Named Entity 21
Recognition in Arabic Medical Texts
Saad Alanazi, Bernadette Sharp and Clare Stanier

A Novel Stimulus and Analysis System for Studying the Neural 31
Mechanisms of Natural Language Processing in the Human Brain
Alyssa Hwang and Sara Chung

The Selection of Classifiers for a Data-driven Parser 39
Sardar Jaf, Allan Ramsay

Jasnopis – A Program to Compute Readability of Texts in Polish 51
Based on Psycholinguistic Research
Łukasz Dębowski, Bartosz Broda, Bartłomiej Nitoń, and
Edyta Charzyńska

A Logical Form Parser for Correction and Consistency Checking 63
of LF resources
Rodolfo Delmonte, Agata Rotondi

Predicting word ’predictability’ in cloze completion, 83
electroencephalographic and eye movement data
Chris Biemann, Steffen Remus and Markus J. Hofmann

Deterministic Choices in a Data-driven Parser 95
Sardar Jaf, Allan Ramsay

Prior Polarity Lexical Resources 106
for the Italian Language
Simone Faro, Valeria Borzì, Arianna Pavone and Sabrina Sansone

An Orthography Transformation Experiment with Czech-Polish 115
and Bulgarian-Russian Parallel Word Sets
Andrea Fischer, Klara Jagrova, Irina Stenger,
Tania Avgustinova, Dietrich Klakow and Roland Marti

Hierarchies of Terms on the Euromaidan Events: Networks 127
and Respondents' Perception
D. Lande, A. Snarskii, E. Yagunova, E. Pronoza and S. Volskaya

Preface

The 12th workshop on Natural Language Processing and Cognitive Science (NLPCS
2015) is a forum for researchers and practitioners in Natural Language Processing
(NLP) interested in taking a Cognitive Science perspective and learning from recent
advances in Cognitive Neuroscience, Cognitive Linguistics and Neurolinguistics. This
workshop was held on 22-23 September, 2015 in Krakow, hosted by the Department
of Computational Linguistics, at Jagiellonian University.
The NLPCS workshops have attracted computer scientist, computa-
tional linguist and cognitive linguist researchers from all over the
world. In addition to the proceedings the workshops contributed to the
following two international journal issues and three books:

Special issue of the International Journal of Speech Technology, vol.
11, issue 3/4, December 2008

Special issue of the International Journal of Speech Technology, vol.
12, 2/3, September 2009

Gala, N., Rapp, R. & Bel-Enguix, Gemma (Eds.) Language Production,
Cognition, and the Lexicon, Springer, 2014

Neustein, A. & Markowitz, J.A. (Eds.) Where Humans Meet Machines:
Innovative Solutions to Knotty Natural Language Problems, Springer
Verlag, Heidelberg/New York, 2013

Sharp, B., Zock, M., Carl & M. Jakobsen, A. L. (Eds.) Human Machine
Interaction in Translation, Copenhagen Studies in Language, Vol. 41,
2011

The papers and posters presented at the workshops covered an impres-
sive range of approaches ranging from linguistics, cognitive and com-
puter science study to language processing. They covered a wide vari-
ety of languages including Arabic, Polish, Czech, Bulgarian and Mizo
languages.

We would like to thank the authors for providing the content of the
programme. In particular thanks to our invited speaker, Philippe Bla-
che, who has contributed the paper entitled "Hybrid Parsing for Human
Language Processing". We are grateful to the programme committee
who worked very hard in reviewing papers and providing helpful feed-
back to the authors. We would like also to thank Jagiellonian Univer-
sity for hosting the workshop and for their help with housing and cater-
ing. Special thanks to Maciej Godny for his help with the administra-
tive support of NLPCS website. Thanks in particular to Stefano Chinel-
lato for his help in publishing the proceedings.

We hope that you will find the proceedings interesting and thought-
provoking and that the workshop will provide you with a valuable op-
portunity to share ideas with other researchers and practitioners from
institutions around the world.

September 2015
Co-chairs of the workshop:
Bernadette Sharp, Staffordshire University, U.K.
Wiesław Lubaszewski, Jagiellonian University, Poland
Rodolfo Delmonte, Ca’ Foscari University, Italy

Hybrid Parsing for Human Language Processing1

Philippe Blache

Aix-Marseille Université & CNRS, Laboratoire Parole & Langage, Aix-en-Provence, France
blache@lpl-aix.fr

Abstract. This paper presents an architecture for human language processing,
explaining both facilitating and complexification effects. It relies on the hy-
pothesis that the default strategy is shallow parsing and relies on chunks (or
constructions), considered as basic units. The paper proposes a representation of
these units in terms of properties. It presents then an algorithm schema, in
which a hybrid technique, integrating shallow and deep parsing, is described.

1 Introduction

A very common observation when studying human language processing is that it is
an extremely fast process, in spite of the apparent complexity of the task. However,
this characteristics remains largely unexplained. As an illustration, many studies in
psycholinguistics have explored parameters that render parsing difficult (see for ex-
ample Gibson, 2000; Grodner et al., 2003). However, very few works tries to identify
what facilitates processing (Blache, 2011).

We propose in this position paper a language processing architecture based on the
idea that the default processing by human is very superficial. We only do in most of
the cases a simple shallow parsing that is usually enough to understand what we read
or hear. Our hypothesis more precisely is based on the idea that the processing relies
on the identification of intermediate groups that are the basic operational units, in-
stead of words. Processing an input consists then basically in identifying these units.
Moreover, the hypothesis also predicts that the presence of such groups facilitates
processing. In this paper, we will first give a description of the basic operational units
in terms of constructions. We propose then a formal approach for their representation
by means of properties, starting from which constructions can be recognized. The
shallow parsing technique is then described, before presenting the general processing
architecture.

1 Research supported by grants ANR-11-LABX-0036 (BLRI) and ANR-11-IDEX-0001-02
(A*MIDEX)

P. Blache

10

2 The operational level: chunks, constructions

Classical architecture of human language processing relies on the hypothesis of on
an incremental word-by-word integration. However, several observations militate in
favour of the existence of intermediate operational units. We present in this section a
brief overview of the notions of chunks and constructions, that can play such a role.

2.1 Chunks

Chunks are broadly used in natural language processing (Abney, 1991; Bird, 2009) as
well as psycholinguistics (Anderson, 2003). Chunks are especially relevant in design-
ing shallow parsing mechanisms, used for different language processing tasks. They
are defined as group of words or categories that are identified by means of local and
low-level properties. It is a non-recursive structure, gathering the words that are
tightly connected and adjacent. Classically, chunks are recognized starting from their
boundaries: left corner (thanks to the intrinsic properties of certain categories such as
the determiner or the preposition) or right bound (thanks to the transition between two
adjacent categories). This boundary recognition is done very efficiently by means of
probabilistic techniques: n-grams directly model such transition properties. Chunks
can also be identified on linguistic basis as set of words with a strong syntactic rela-
tion (for example between a specifier and a head). Such symbolic definition of chunks
has been used for example in the context of parsing evaluation (Paroubek et al.,
2008), in which chunks has been defined in terms of syntactic units, gathering the
main adjacent constituents of the different phrase types.

In a cognitive perspective, different studies have shown the importance of chunks
in human language processing. For example, (Krishnamurthy, 2003) suggests that
words are not the operational unit in language processing when learning a language,
the real unit being chunks, defined as groups of words that form meaningful units. In
the same vein, another study has shown using oculometry that chunks are also more
likely to be basic units when reading (Rauzy et al., 2012). One observation that can be
done is that the presence of chunk is a facilitator of language processing: chunks are
read faster than unlinked set of words (Ellis, 2003). In this perspective, several studies
in neuroscience have identified a functioning based on chunks, treated as lexical units
(Capelle et al., 2010).

2.2 Constructions

The notion of construction in grammar (Fillmore, 1995) relies on a specific form-
function relation coming from the convergence of different properties (lexical, seman-
tic, syntactic, etc.). Constructions are patterns in which the meaning emerges from the
interaction between the different components, not compositionally (Goldberg, 2009).
The following examples illustrate different types of constructions:

1. Covariational Conditional
The Xer the Yer (e.g. “The more you watch the less you know”)

Hybrid Parsing for Human Language Processing

11

2. Ditransitive
Subj V Obj1 Obj2 (e.g. “She gave him a kiss”)

3. Idioms
e.g. “kick the bucket”

In construction-based approaches, language (or more precisely speakers’ knowl-
edge of language) is based on collections of such form-function pairings. An impor-
tant question in the perspective of language processing is to understand how construc-
tions are recognized. When taking the case of idioms in which meaning is completely
non-compositional, psycholinguists propose two different solutions. One is the “Lexi-
cal Representation Hypothesis” (Bobrow et al., 1973). In this case, idioms are stored
with normal words in memory. They are processed both literally and figuratively
simultaneously, but the figurative meaning is accessed first. However, this explana-
tion does not account for idiom flexibility: many of them can be transformed to some
extent and still be recognized and understood as idioms. It does not also explain the
fact that idioms are processed more rapidly than literal expressions.

In other approaches, idiom processing, instead of being lexical, relies on “normal”
language processing. This is the case of the “Configurational Hypothesis” (Cacciari et
al., 1988) in which a sufficient portion of an idiomatic expression must be processed
literally before the idiom can be identified. After reaching this recognition point, the
rest of the idiom is not processed literally anymore. It has been shown in particular
that the brain activity differs before and after the idiom recognition point: one event-
related potential, called N400, shows a lower negativity (Vespignani et al., 2009).

At a more general level, several studies have started to investigate neurological
evidence of construction role during language processing, stipulating the existence of
constructional templates in the brain (Pulvermuller et al., 2013). As it is the case with
chunks (and for the same reasons), the identification of a construction seems to play a
facilitator role in language processing, which is observed both in time-reading and
brain activity.

3 Representing linguistic properties

Classical incremental approaches do not integrate easily constructions into a gen-
eral processing architecture. The first problem is that we have to involve into a unique
mechanism different types of objects (words, categories, constructions). Moreover,
the recognition of a construction relies on the accumulation of different properties,
and sources of information.

We propose in our approach an important shift: instead of building compositionally
a semantic representation starting from the different linguistic domains (especially
syntax), we propose to start by gathering all possible information, and then trying to
see how they can lead to an interpretation. Understanding a sentence (or a message)
does not consist in building a structure (for example a formula), but in identifying the
level of information available for the interpretation. We propose for this to represent
separately all the different types of information, also called properties (Blache, 2000),
whatever their level (relations between features, categories, chunks, etc.) or their
domain (morphology, syntax, semantics, etc.). These properties connect the different

P. Blache

12

words of a sentence when processing an input. In this approach, instead of building a
structure, the processing mechanism consists in describing the input by identifying the
different properties.

Starting form syntax and semantics, here is a list of possible properties that can be
directly represented as relations between words:

• Linearity: linear order that exists between two words
• Co-occurrence: mandatory co-occurrence between two words
• Exclusion; impossible co-occurrence between two words
• Uniqueness: impossible repetition of a same category
• Dependency: syntactic-semantic dependency between two words. Different

types of dependencies are encoded: complement, subject, modification,
specification, etc.

A grammar is a set of all the possible relations between categories, describing the
different constructions. In terms of operational semantics, the interpretation is
straightforward. Given a sentence S, evaluating a property of the grammar consists in
verifying whether the relations between two categories corresponding to words of S
are true. For example, linearity consists in checking the linear order between the cate-
gories of the corresponding words in the sentence to be parsed. As another example,
uniqueness verifies that a same category, within a set of categories corresponding to a
subset of words in a sentence, is not repeated.

The following figure shows an example in which the different properties are repre-

sented by labelled edges2 between words:

Fig. 1. Graph of properties describing a sentence

As can be seen in this graph, some subsets of words are more connected between
each other. The idea is that this density represents a higher level of information, cor-
responding to constructions3. A construction being a subset of words of the sentence,
the set of constructions forms a partition of the sentence.

A property is a relation of a certain type, that can be unary or binary. Moreover,
such relation can be more or less imperative, corresponding to the distinction between
hard and soft constraints (Keller, 2010). This information is implemented in terms of
weights (in the following examples, we use H+, H and S values, distinguishing be-
tween hard and soft properties). At this stage, a property is a tuple of the form:

<id, relation-type, source_node, target_node, weight>

The following example illustrates the case where some relations are of particularly
high weight. This is typically the case of idiomatic construction: after the recognition

2 Edges are labelled with the type of the property (co-occurrence, linearity, dependency, etc.)
3 In this representation, all connected subgraphs correspond to syntactic constructions.

Hybrid Parsing for Human Language Processing

13

point, the co-occurrence as well as linearity relations become imperative constraints.
They are represented in the graph with a double arrow:

Fig. 2. Constraint graph for an idiomatic construction

All properties are represented independently from each other. However, as de-

scribed in the previous section, constructions correspond to set of properties that in-
teract together. It is then necessary to represent such links between properties describ-
ing the same construction. At the difference with constituency-based approaches in
which a construction is described in terms of sets, our approach consists in specifying
directly the links between the properties. We propose to add to the representation of
the properties this interconnection information by adding a new argument encoding
the properties linked to the current as follows:

 <id, type, source, node, weight, linked_props>

The linked_props argument is a set of indexes, pointing towards other relations
describing the same construction. For example, the dependency relation between a
preposition and a noun depends on the linearity: if Prep<N, then Prep is the head and
N depends on it. Reciprocally, when N<Prep, the Prep depends on N. These relations
between properties are represented as follows

<1, lin, Prep, N, H, {}> <2, comp, N, Prep, L, {1}>
<3, lin, N, Prep, H, {}> <3, mod, Prep, N, L, {3}>

The example of the ditransitive construction can be implemented in the same man-

ner, specifying different dependency types according to the form (the first noun is the
indirect object, the second the direct):

<1, lin, V[dit], N1, H, {}> <4, iobj, N1, V, H, {1,2,3}>
<2, lin, V[dit], N2, H, {}> <5, obj, N2, V, H, {1,2,3}>
<3, lin, N1, N2, H, {}>

In this example, the properties implementing the dependency relations are linked to

the three first properties with the corresponding indexes.

4 Two types of parsing with properties

4.1 Shallow vs. Deep Parsing

A property can be evaluated by a function returning its truth value. Two types of
properties can be distinguished according to the way they are evaluated (Blache &
Dahl, 2004):

P. Blache

14

• Success-monotonic properties: when a relation between two categories
holds, it remains true when parsing the rest of the sentence. For example, the
linearity between most and interesting in Fig. 1 holds a soon as it can be ev-
aluated, and remains true until the end. In a more formal manner, the linear-
ity relation a<b is true in the sequence of words s=[γ, a, b, η], whatever the
composition of γ���� η.�Two types of properties are success-monotonic:
linearity and co-occurrence.

• Success-non monotonic properties: A property can be true locally and false
at a larger span: the evaluation of a property depends on the set of categories
taken into account. For example an exclusion relation between he words a
and d is true within the set of words s1={a, b, c}, but false when adding a
new category d to this sequence s2={a, b, c, d}. In this case, it is then neces-
sary to choose a partition into which evaluating the constraint.

We propose to distinguish two kinds of parsing based on a distinction between

shallow and deep parsing. Moreover, we want this distinction to be cognitively
grounded in terms of memory load: shallow parsing does not require much resource,
contrarily to deep. The above distinction of monotonicity makes it possible to imple-
ment the parsing strategies:

• Shallow parsing: evaluation of success-monotonic properties. In this case,
properties can be evaluated independently from the context. There is no am-
biguity, the evaluation is independent from the subset of categories of the
sentence.

• Deep parsing: evaluation of all properties, monotonic or not. In this case, it
is necessary to take into consideration all the possible partitions of the sen-
tence. (i.e. the possible subsets of words of the sentence). In a classical view,
this comes to explore all the possible solutions.

The general parsing process consists in evaluating properties when scanning a new
word in the sentence. This evaluation consists in identifying in the grammar all the
properties having the word or its category as a target.

In the case of shallow parsing (i.e. evaluation of linearity and co-occurrence), all
properties can be directly evaluated (no need of the context). It is interesting to note
that these two relations are the one that are crucially encoded by n-grams used in a
probabilistic approach. In this case, a transition probability between two categories is
higher when strong linearity and co-occurrence relations link them. This characteristic
will be of certain interest for the specification of the parsing architecture.

In the case of deep parsing, the mechanism consists in building the different parti-
tions of the set of words from the beginning until the word to be integrated, and then
evaluating the properties having the current word as target, taking into account the
subset in which it appears.

4.2 Inferring Properties

Our representation of constructions underlines the interaction existing between the
properties. More precisely, some properties of the constructions are specific in the

Hybrid Parsing for Human Language Processing

15

sense that they depend on the realization of other properties. For example, the gram-
matical role of nominal objects in the ditransitive construction depends on the linear-
ity of the constituents. We can observe the same kind of relation in most of the con-
struction. In particular, it is very often the case that dependency properties depend on
the realization of other properties. This also means that some properties can be pre-
dicted from a set of properties already evaluated.

For example, as seen above, the dependency relation between a prepositional and a
nominal construction depends on the linearity between them. We can then infer their
dependency relation from the evaluation of linearity. The same type of inference can
be applied in many other cases. For example it is also possible to infer dependency
relations from the linearity ones in the ditransitive construction. In such cases, a sub-
set of properties acts as a trigger for targeted ones.

Moreover, inference can also be applied to modify or precise some features or val-
ues of the properties within a construction. For example, in the case of an idiom, the
weights of the co-occurrence and linearity relations between the words can be inferred
after reaching the recognition point. In the same way as for triggering properties, the
sequence of words until the RP is the trigger of the new weights of the rest of co-
occurrence and linearity relations.

Inferring new properties or weights is then a direct mechanism, which does not re-
quire any analysis process (then any extra cognitive load). Moreover, the triggering
properties are in most of the cases directly evaluable (i.e. the success-monotonic).
This means that such inference can be done even when doing shallow parsing. In a
cognitive perspective, this means that such information only represent a light load:
inference simply consists in instantiating new information, completing the existing
one. We call this mechanism “complemented shallow parsing”.

5 Hybrid Parsing

Several works in cognitive psychology use the old hypothesis that working mem-
ory has a capacity of seven units (Miller, 1956). This hypothesis has been often chal-
lenged (in particular, this capacity seems not to be constant), but the idea remains that
when processing an input, we can store a limited amount of information. Without
taking position on this debate, our architecture relies on this first idea that a limited
amount of memory units, called buffers, can be used during parsing.

Other works in this same domain have shown that the kind of information to be
bufferized can be complex (Anderson, 2004): several atomic elements can be aggre-
gated and form chunks. Our approach also takes this idea that when possible, atomic
elements (i.e. words) can be aggregated into chunks. The hypothesis is that these
chunks (as presented in the first section) can have different forms and constitute a
facilitator to processing.

P. Blache

16

5.1 Identifying chunks: the notion of cohesion

The question with this schema is how to identify a chunk. As seen above, a chunk
is a convergence of a highly cohesive set of words. Such cohesion can be identified
thanks to the strength of the relations that linked them together. The cohesion can
come from any domain and then be of different types, for example:

• Lexical selection: in the case of multiword-expressions or frozen idioms,
there exists a co-occurrence and linearity properties that link the words to-
gether. These properties bear the maximal weight. Moreover, these proper-
ties also makes it possible to directly infer a semantic interpretation, that re-
inforce cohesion of the set.

• Subcategorization: several constructions are based on a mandatory subcate-
gorization of the complement by the governor. Typically, certain verbs are
necessarily transitive and can never be constructed in an intransitive manner.
In this case too, this is represented by linear and co-occurrence properties
with a heavy weight.

• Constructions: most of the constructions are the result of the convergence be-
tween a large number of properties. In this case, each property is not neces-
sarily of a heavy weight. The cohesion comes from the density of the prop-
erty network.

The basic mechanisms when building a chunk consists then in evaluating the cohe-
sion of the set of words, thanks to density and weights. For doing so, we propose a
simple cohesion function, based on two factors: density and weights, defined as fol-
lows:

cohesion =

prop _ weights∑
words

In this formula, density is the sum of the property weights divided by the number

of words. In this approach, both density (number of properties) and weights (relative
importance of a property) are taken into consideration.

For any set of words, it becomes then possible to evaluate directly its cohesion.
The decision whether a set of words forms a chunk or not depends then from the
choice of a threshold, beyond which the structure is considered to be highly cohesive.

5.2 The processing schema

The processing architecture relies on two types of processing that are applied de-
pending on the input. In the general case, we only use complemented shallow parsing
to identify the possible chunks/constructions. It can be the case that this mechanism
leads to a complete processing of the sentence and its interpretation. In some situa-
tions, it is not possible to fully integrate all the elements into a unique chunk. In this
case, we apply then a deep parsing technique, dealing with ambiguity and exploring
the possible interpretations.

Concretely, at each step (i.e. at each new item scanned from the input), a comple-
mented shallow parsing is applied to the current sequence of words. This sequence is

Hybrid Parsing for Human Language Processing

17

made of the last chunk under construction (possibly made of a unique word) plus the
new input word. If the sequence reaches a certain cohesion threshold (see previous
section), then the input word is aggregated to the current chunk. This mechanism can
be seen as a shift/reduce processing: when possible, a sequence of words is merged
into a single unit, applying there a reduce operation.

It is important to remind that, even when using shallow parsing, new properties can
be inferred, in particular the dependency ones. In this case, we can start to build at this
basic level a semantic structure. The semantic aspect is an important parameter com-
ing into play when identifying a chunk. As explained, a chunk is a cohesive set of
words. This cohesion can be identified in some cases only thanks to syntactic con-
straints such as linearity, exclusion, etc. When a chunk also bears semantic informa-
tion (a dependency structure leading to an interpretation), then it constitutes a con-
struction. In the –extreme- case of idioms, the identification of the chunk as well as its
interpretation comes directly (not compositionally) after the recognition point.

The general process consists then in scanning the entire input, trying to reduce as
much as possible into chunks. In the cognitive architecture, a chunk occupies a unique
buffer. When a new word cannot be integrated into the current chunk, it is then stored
into a new buffer. This mechanism is applied until reaching the maximal capacity of
the working memory (let’s say seven buffers). Reaching this limit means that no re-
duction can be done for the set of words, and no interpretation can be given. In such a
situation, a deep parsing process is launched, exploring incrementally all the possible
structures leading to an interpretation. This means to explore different possible solu-
tion, trying to identify the optimal one.

An algorithm schema can be given, presenting the main lines of this hybrid pars-

ing. In this schema, we have a stack of buffers storing words or chunks. What is
stored is more precisely the property graph associated to the words (i.e. the set of
words plus their properties). In the following, we note functions in italics with an
initial capital letter and data structure in lower case. The function Scan returns the
current word of the input sentence.

Init:

i=0; j=0; buffer(bj) ← Scan(wi) repeat
 i++; Scan(wi)

ci ← bi-1 + wi
 graph[ci] ← Shallow_parse(ci)
 if Cohesion(graph[ci]) > threshold
 then buffer(bj) ← graph[ci]
 else j++; buffer(bj) ← wi until (j=7 or eos)
if (j>1) then Deep_parse([b1..bj])

The schema consists in a loop trying to identify the chunks thanks to shallow pars-

ing. Chunks (ore isolated words when no aggregation is possible) are stored into buff-
ers. When the buffer stack reaches the maximal memory capacity, a deep parsed is

P. Blache

18

launched. This schema makes it possible to identify different situations, correlated
with different processing difficulty levels:

• Simple processing: the entire input can be reduced into a unique chunk (at

the end of the process, the buffer stack contains only one buffer with one
chunk). Accessing to interpretation is done only by means of shallow pars-
ing.

• Medium difficulty: several chunks can be identified; the final interpretation
process relies on deep parsing integrating the different chunks. The overall
process makes use of shallow and deep parsing.

• Difficult processing: no chunks can be identified. The only process relies on
deep parsing.

6 Conclusion

In this paper, we have explored the idea that the default mechanism in human lan-
guage processing is shallow parsing. In most of the case, starting from very basic
properties, higher-level information can be inferred, until reaching the possibility to a
direct access to the meaning of entire subparts of the sentence, without any need of
complex compositional mechanism. This architecture relies on the existence of inter-
mediate operational units formed by constructions. These elements are form-meaning
pairings, identified by a convergence of different linguistic properties. Very often, the
constructions can be recognized starting from basic properties. As soon as a construc-
tion is recognized, the corresponding meaning can be accessed directly. The presence
of constructions is then an important facilitator effect.

We have proposed a parsing strategy implementing a hybrid parsing: shallow pars-
ing as default, and deep parsing when no construction can be built. This strategy is in
line with the cognitive architectures, describing the working memory as a set of buff-
ers. When a construction is recognized, it is stored in a buffer that contains otherwise
only words). The number of buffer is limited (many approaches evoke the number of
7 buffers). When the maximum capacity of the memory is reached, then a deep pars-
ing is applied.

This hybrid processing architecture offer a framework explaining both facilitating
and complexification effects during language processing. Moreover, the property-
based representation provides the basis of a new shallow processing technique, ex-
plaining how new information (in particular meaning) can be accessed directly.

Hybrid Parsing for Human Language Processing

19

References

Abney, S. (1991) Parsing by chunks. In Principle-Based Parsing. Kluwer Academic Pu-
blishers

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C. Et Qin, Y. (2004) An

integrated theory of the mind. Psychological Review, 111(4)

Bird S., Klein E., Loper E. (2009) Natural Language Processing with Python - Analyzing
Text with the Natural Language Toolkit, O'Reilly Media

Blache P. (2000) Constraints, Linguistic Theories and Natural Language Processing, in
Natural Language Processing, D. Christodoulakis (ed), Lecture Notes in Artificial Intelli-
gence 1835, Springer-Verlag

Blache P. (2011) "A computational model for linguistic complexity", in proceedings of the
first International Conference on Linguistics, Biology and Computer Science

Blache P. & Dahl V. (2004), Directly executable constraint-based grammars, in procee-
dings of JFPLC-04

Bobrow, S. A., Bell, S. M. (1973) On catching on to idiomatic expressions, Memory and
Cognition, 1:3

Cacciari C. & Tabossi P. (1988) The comprehension of idioms, Journal of Memory and
Language, 27:6

Cappelle B., Shtyrov Y, Pulvermüller F. (2010) Heating up or cooling up the brain? MEG
evidence that phrasal verbs are lexical units, in Brain & Language 115

Ellis, N. C. (2003) Constructions, chunking and connectionism: The emergence of second
language structure. In C. J. Doughty & M. H. Long (Eds.), The handbook of second lan-
guage acquisition, Blackwell Publishing.

Frank A., Becker M., Crysmann B., Kiefer B. and Schäfer U. (2003) Integrated Shallow
and Deep Parsing: TopP meets HPSG, in Proceedings of the 41st Annual Meeting of the
ACL

Gibson, E. (2000) The dependency locality theory : A distance-based theory of linguistic
complexity. In Image, language, brain. A. Marantz, Y. Miyashita, W. O’Neil (eds), MIT
Press

Grodner, D. and Gibson, E. (2005). Consequences of the serial nature of linguistic input
for sentential complexity. Cognitive Science, 29

Hammerton J., Osborne M., Armstrong S. (2002) Introduction to Special Issue on Machi-
ne Learning Approaches to Shallow Parsing, in Journal of Machine Learning Research 2

Krishnamurthy, R. (2003) Language as chunks, not words, in M. Swanson, & K. Hill
(Eds.), in proceedings of JALT2002 : conference proceedings: waves of the future

Miller, G. A. (1956) The magical number seven, plus or minus two: Some limits on our
capacity for processing information, in Psychological Review 63 (2)

P. Blache

20

Paroubek P., Robba I., Vilnat A. and Ayache C. (2008) EASY, Evaluation of Parsers of
French: what are the results? , in proceedings of LREC 2008

Pulvermüller F. , Cappelle B.and Shtyrov Y, (2013) Brain Basis of Meaning, Words,
Constructions, and Grammar, The Oxford Handbook of Construction Grammar, T. Hoff-
mann and G. Trousdale (eds), Oxford University Press

Vespignani F., Canal P., Molinaro N., Fonda S., and Cacciari C. (2010) Predictive Mecha-
nisms in Idiom Comprehension, in Journal of Cognitive Neuroscience 22:8

An Evaluation of AMIRA for Named Entity
Recognition in Arabic Medical Texts

Saad Alanazi1, 2, Bernadette Sharp2 and Clare Stanier2

1 College of Computer Science and Information, Aljouf University, Skaka, Saudi Arabia
saad.alanazi@research.staffs.ac.uk

2 Faculty of Computing, Engineering and Technology, Staffordshire University, Beaconside,
Stafford ST18 0AD, UK

{B.Sharp, C.Stanier} @staffs.ac.uk

Abstract. A study is carried out to evaluate the AMIRA tool which has been used widely
to pre-process Arabic texts for natural language processing tasks. AMIRA is used in our study
to tokenise and POS tag our Modern Standard Arabic medical texts. AMIRA includes a
tokeniser, POS tagger, and a base phrase chunker. The AMIRA tokeniser has achieved 91.22%,
87.15% and 89.13% for precision, recall and F-measure, respectively, while AMIRA POS
tagger achieved 84.09% accuracy. The most common errors in the tokeniser outputs were in the
words where the first letter after the ال (Al) determiner is ل (L). With respect to the POS
tagging, AMIRA underperformed in the following categories: broken plurals, adverbs,
adjectives and genitive nouns.

1 Introduction

The term “Named Entity”, which was coined for the Sixth Message Understanding
Conference (Grishman & Sundheim 1996) was initially applied to information
extraction tasks aimed at extracting names of person, organisation and locations as
well as numeric and percent (e.g. time, date, money) expressions from structured and
unstructured documents. This task was not only recognised as essential step of
information extraction but became a focus of study for many researchers.

This paper focuses on text tokenisation and part-of-speech tagging (POS), two
crucial steps in many natural language processing applications and, in particular, in
named entity recognition. The first task is tokenisation which aims to convert text into
tokens, where tokens are one or more characters that express an independent linguistic
meaning, and roughly correspond to words. The tokenisation task is crucial because
errors made in this phase can propagate into later phases and lead to serious problems. It
may seem less challenging in the context of some languages, such as English, where a
single space or punctuation is used to split sentences into words (tokens). However, it is
very challenging in some languages, like Chinese, Japanese, and Thai, which do not use
spaces to split sentences into words (Peng et al., 2004). It is a challenging and non-
trivial task in the Arabic language as word tokens cannot be delimited solely by a blank
space because Arabic words are often ambiguous in their morphological structure. The

S. Alanazi, B. Sharp, C. Stanier 22

aim of the second task is POS tagging which assigns an appropriate POS tag to every
token in the input data (Voutilainen, 2003). As Arabic has a very rich and complex
morphology a word can carry not only inflections but also clitics, such as pronouns,
conjunctions, and prepositions. A single stem may correspond to thousands of different
word forms (Habash, 2010; Mohamed & Kübler, 2010).

The aim of our research is to extract information about symptoms, treatment and
drugs relevant to cancer from Arabic medical literature. We have used the AMIRA
tool developed at Stanford University (Diab, 2009) in our tokenisation and POS tasks.
This paper discusses the problems and issues encountered in applying AMIRA.
Section 2 explains the challenges related to tokenisation and POS of Arabic texts.
Section 3 reviews previous work and section 4 describes the data set, the experimental
set up and discusses the results. Section 5 presents our final findings.

2 Challenges of Arabic Language Processing

Arabic has many traits which, make building an effective tokenising and POS tagging
tool a very challenging task. Some of these main challenges are described below.

2.1 Agglutination

The Arabic language has an agglutinative nature and this results in different
patterns, which can create many lexical variations. It has a very systematic, but
complicated morphology. This is seen with words that comprise prefixes, a stem or a
root, and sometimes even more than one, as well as suffixes with different
combinations. There are also clitics, which in most languages, including English, are
treated as separate words; however in the Arabic language, they are agglutinated to
words (Farghaly and Shaalan, 2009). For instance, a phrase in English, such as "and
they will write it" can be split into five tokens, while in Arabic this is expressed in one
word وسيكتبونھا (wsyktbonha). As this example demonstrates, the conjunction “and”
and the future marker “will” are represented as prefixes by the letter و and س,
respectively, while the pronouns “they” and “it” are represented by the suffixes ون
and ھا, respectively. Because of the complex morphological structure of the Arabic
language, the tokenisation process is a difficult and challenging task.

2.2 Short Vowel Absence

Diacritics can be found in Arabic text, which is a representation of most vowels
that affect phonetic representation. This lends an alternative meaning to the same
word. Consequently, disambiguation in the Arabic language is a difficult task because
it is may be written without diacritics (Alkharashi, 2009). For instance, the word كتب
without using diacritics could mean the noun “books” or the verb “to write”;
therefore, determining the appropriate POS tag is difficult in the absence of diacritics.

An Evaluation of AMIRA for Named Entity 23

2.3 Rich Morphology

Arabic has a very rich morphology. As a result, a vast number of words can be
derived from only one root. For instance, the following words have been derived from
the root ك ت ب (k t b): كتب (wrote), كتاب (book), كاتب (writer), كتبة (writers – broken
plurals), كُتاّب (writers – broken plurals), مكتب (office),مكتبات (offices), مكتبة (bookstore),
 ,(writers- feminine) كاتبات ,(writers- masculine) كاتبون ,(booklet) كُتيب ,(written) مكتوب
 and so on. Consequently, the tag set can potentially be huge and can ,(Battalion) كتيبة
reach over 330,000 tags for untokenised words (Habash, 2010), an additional
challenge for Arabic POS tagging.

3 Previous Research

The tokenisation process is often discussed as a part of several existing
morphological analysers, such as the Buckwalter Arabic morphological analyser
(BAMA), AMIRA (Diab, 2009), MADA+TOKAN, Khoja stemmer and the tri-literal
root extraction algorithm (Al-Shalabi et al, 2003). BAMA uses pre-stored dictionaries
of words, stem and affixes constructed manually, as well as truth tables to determine
their correct combinations (Buckwalter, 2004; (Buckwalter, 2002). BAMA consists of
three parts: lexicon, compatibility tables, and an analysis engine. All the prefixes,
suffixes, and stems are gathered in a different lexicon. The task of the compatibility
table is to determine whether the morphological units (prefix-stem- suffix) are
permitted to occur all together or not. The analysis engine produces different
morphological analyses such as POS tag, lemma, and morpheme analyses. AMIRA
and MADA, both use a support vector machine (SVM) to perform the tokenisation of
Arabic words. The AMIRA tool (Diab, 2009) which was developed at Stanford
University, includes a tokeniser, POS tagger, and a base phrase chunker. AMIRA uses
a fixed size window of +/- five letters; all letters tags within the window are used as
features to feed the SVM algorithm. AMIRA provides the user with a choice of three
tagging schemes: Bies, ERTS, and ERTS_PER tag sets. In the MADA+TOKAN
system MADA which is the morphological analyser makes use of orthogonal features
and a list of potential analyses provided by BAMA to select the most appropriate
analysis of each word. TOKAN uses morphological generation to recreate the word
after splitting off its clitics (Habash et al., 2009). In the Khoja stemmer (Khoja, 1999),
the longest prefix and suffix are removed from the word, and then the remainder of
the word is matched with the patterns of different nouns and verbs. The stemmer
makes use of a list of all diacritic characters, punctuation characters, definite articles,
and stop words (Larkey & Connell 2001). Al-Shalabi et al. (2003) have developed a
tri-literal roots extraction algorithm that does not depend on any pre-stored
information, but assigns mathematical weight to the position of the letters in a word.
Higher weights are assigned to the letters at the beginning and at the end of the word
and lower weights to root letters.

A comparative analysis of the three stemmers, Khoja stemmer, BAMA, and tri-
literal root extraction algorithm, was carried out by Sawalha and Atwell (2008). These
three systems were applied to two distinct documents: a newspaper and a chapter

S. Alanazi, B. Sharp, C. Stanier 24

from the Qur’an, each containing about 1000 words. The three stemming algorithms
have generated correct analysis for simple roots that do not require detailed analysis.
The performance is computed using a majority voting procedure in selecting the most
common root among the list of words and their roots. Their analysis showed about
62% average accuracy rate for Qur’an text and about 70% average accuracy for
newspaper text.

4 Experimental Study with AMIRA

The accuracy of the stemmers may not be an important issue for information
retrieval systems but it is vital for named entity recognition applications. Our
approach to extracting specific named entity from cancer documents consists of four
main stages: pre-processing, data analysis, feature extraction, and classification
stages. The pre-processing stage (in dashed line) covers the data tokenisation and POS
tagging approach, which is the focus of this paper. The resulting tokens and their
grammatical tags are transferred into a set of features which are then used as inputs
for the classification phase. It is proposed to use Bayesian Belief Network to train
and classify the extracted features which will then become the recognised entities.
Any errors encountered in the early processing of texts have to be rectified to avoid
their propagation in subsequent tasks and to produce a reliable training system. Figure
1 displays our named entity recognition system architecture.

In order to perform the text tokenisation task, the AMIRA tool was used as it
accepts raw Arabic texts as input and allows the user to choose between different
tokenisation schemes.

Fig. 1. The NER system architecture

An Evaluation of AMIRA for Named Entity 25

4.1 Data Description

The data for our study is based on Modern Standard Arabic texts extracted from
the King Abdullah Bin Abdulaziz Arabic Health Encyclopaedia (KAAHE) website.
KAAHE was initiated through the collaboration between the King Saud Bin
Abdulaziz University for Health Sciences and the Saudi Association for Health
Informatics and further developed by the National Guard Health Affairs the Health on
the Net Foundation and the World Health Organisation. KAAHE became the official
health encyclopedia in May 2012 (Saudi E-health Organisation, 2012). KAAHE is a
reliable health information source, contains abundant information written in an easily
understandable language appropriate for users from various community groups
(Alsughayr, 2013).

4.2 Tokenisation Task

AMIRA was applied to 26 articles with a total of 5119 tokens. Each article is
related to a specific type of cancer. AMIRA allows the user to determine the
tokenisation scheme from the different existing schemes. Different prefixes such as
conjunctions, future markers and prepositions are selected to be split into parts. The
Al determiners and suffixes are not tokenised because this increases the ambiguity
and sparsity of the text, as there are more than 127 suffixes in Arabic (Sawalha and
Atwell, 2009). Figure 2 displays a sample of the tokenisation result where errors are
highlighted in grey.

Fig. 2. A sample of the tokenization task result

In the above example, AMIRA missed tokenising the words: بالنوع (bAlnwE - type)
and بالسرطان (bAlsrTAn – by cancer) which starts with the preposition ب (b) and the
word وھو (whw – and it) which starts with the conjunction و (w). On the other hand,
AMIRA tokenised the word اللمفية (Allmfyp -lymphatic),which does not need to be
tokenised, by adding ا (A) letter after the determiner ال (Al) so the wrong result of
tokenisting this word is الالمفية (AlAlmfyp).

We evaluated the results of AMIRA’s tokenization result in terms of three
measures, precision, recall and F-measure using the following equations:

S. Alanazi, B. Sharp, C. Stanier 26

The AMIRA tool has achieved 91.22%, 87.15% and 89.13% for precision, recall and
F-measure, respectively. Two categories of errors are identified:

• False positive errors that occur when AMIRA tokenises a word that does not
need to be tokenised.

• False negative errors that occur when AMIRA misses tokenising word that
needs to be tokenised.

One of the most common false positive errors was tokenising words where the
first letter after the ال (Al) determiner is ل (L). Examples of these words are: اللعابية
(AllEAbyp - salivary), اللمفية (Allmfyp - lymphatic), اللوزتين (Allwztyn - tonsils) and
 Some of these errors may be related to the limited .(AllwkymyA - leukemia) اللوكيميا
data set used by AMIRA’s classifier. These errors were corrected manually before
moving to the next task. AMIRA adds a ا (A) letter after the determiner in these words
so the wrong results of tokenising these words are الالعابية (AlAlEAbyp), الالمفية
(AlAlEAbyp), الالوزتين (AlAlwztyn), and الالوكيميا (AlAlwkymyA). A proposed solution
for this error is not to tokenise any words that have a double letter ل (L), unless the
double ل (L) is the first two letters, or to insert a good number of examples of these
words into the training data if the tokenisation system is using a machine learning
technique, as with AMIRA. Regarding false negative errors, the main words were
those that started with the ب (b) preposition. Examples of these words are: بالسرطان
(bAlsrTAn -by cancer), بحسب (bHsb - according to), بالدھون (bAldhwn - with fats), باليود
 (bAlywd - with iodine). It is possible to split the ب (b) preposition if the following
letters are the determiner ال (Al). This is because Arabic words which start with بالـ
(bAl), where the ب (b) is an original letter of the word, are very uncommon. In order
to examine how common these words are, the ANERcorp corpus, which consists of
around 150,000 tokens (Benajiba et al., 2007) was used. Among the ANERcorp, 1104
words start with بالـ (bAl). However, in only 21 of these is بالـ (bAl) part of the original
word, and nine words of the 21 words are actually non-Arabic. The rest of the words
are a repetition of only four Arabic words which are بالغة (bAlghp - exaggerate), بالغ
(bAlgh - adult), بال (bAl - shabby) and بالي (bAly - shabby). Creating a gazetteer for
words which start with بـالـ (bAl) when the ب (b) is an original part of the word, would
assist the tokenisation of such words.

An Evaluation of AMIRA for Named Entity 27

4.3 POS Tagging

AMIRA is also applied to perform POS tagging. Three different tag sets are
available: Bies tag set, Extended Reduced tag set (ERTS) and Extended Reduced tag
set + person information (ERTS_PER). The Bies tag set was developed by Ann Bies
and Dan Bikel and consists of 24 tags. It ignores certain Arabic distinctions, for
example, it treats the dual form, a common form in Arabic language, as a plural. It
also can not specify gender in both verbs and nouns. The ERTS tag set has 72 tags
and provides additional morphological features to the Bies tag set, and can handle
number (singular/dual/plural), gender (feminine/masculine) and definiteness (the
existence of the definite article or not). In addition to the tags in the ERTS tag set, the

Fig. 3. A sample of the POS tagging task result

ERTS_PER specifies the use of the first, second and third person voice. The
ERTS, which was selected for the POS tagging task, has many relevant
morphological features to our corpus while Person information is a less important
feature as our data only has the third person voice. Figure 3 displays a sample of the
POS tagging task result.

In the above example, AMIRA assigned a noun tag to the place adverbs خلف
(behind) and أمام (in front of). It also assigned an adjective tag to the genitive noun
 Amira also failed in assigning a plural noun tag NNS to the word .(stomach) المعدة
 We evaluated the results of AMIRA’s POS tagging in terms of the .(factors) عوامل
accuracy. POS tagger accuracy is the number of correctly tagged tokens divided by
the total number of tokens. AMIRA achieved an accuracy of 84.09%. However,
Arabic POS taggers still need more research efforts to improve the accuracy and reach
a standard equal to Stanford POS tagger for English language which has achieved
97.3% accuracy (Manning, 2011). The areas where AMIRA performed less than the
average is explained below.

• Broken plurals

Arabic has three types of plurals: the broken plural, the sound masculine plural
and the sound feminine plural. The most used type is the broken (irregular) plural,
constituting about half of all plurals in Arabic (Habash, 2010). AMIRA has limited
capability to assign an appropriate POS tag to broken plurals, as 32.02% of AMIRA
errors are related to broken plural words. For instance, AMIRA assigns a singular
feminine word tag (DET_NN_FS) to the broken plural words الأوعية (utensils), الأنسجة
(tissues) and الأقنية (ducts). It also failed to assign a plural noun tag (NNS) to most of
the other broken plural words. Examples of these words are الأطباء (doctors), ُسُبل
(ways) and خلايا (cells). Broken plurals can be formed using more than 20

S. Alanazi, B. Sharp, C. Stanier 28

morphological patterns. Furthermore, an Arabic word might have more than one
plural. For instance, the word أسد (lion) has five different broken plural forms (آساد -
 Therefore, it can be quite difficult to identify a solution for .(أسُْد – أسَدة – أسُد - أسود
broken plural POS tagging. We propose to improve the performance of broken plurals
POS tagging by using machine learning classifier techniques such as neural networks,
or decision tree. In the literature, Goweder et al (2004) examine different methods in
order to identify the broken plural. Then concluded that the dictionary and decision
tree methods achieved the highest results in identifying broken plurals.

• Adverbs

In Arabic, there are two main types of adverb: those describing time and others
referring to place or location. AMIRA assigned a noun tag (NN) to most adverbs in
our corpus. Examples of these adverbs are: خلف (behind), أسفل (at the bottom of) and
 We propose to create an adverb gazetteer and use it as a binary feature to .(after) بعد
feed the machine learning classifier.

• Adjective and genitive nouns

One of the most frequent errors in AMIRA’s POS output is assigning an adjective
tag (JJ) to genitive nouns (المضاف إليه). For instance, AMIRA assigns a JJ tag to the
word ‘stomach’ in the phrase سرطان المعدة (cancer of the stomach), the word ‘patient’
in the phrase فرصة المريضة (the patient’s chance) and the word ‘appetite’ in the phrase
 There are some grammatical differences between .(loss of appetite) نقصان الشھية
adjectives and genitive nouns, in Arabic grammar. Adjectives and the nouns that they
modify must agree in number (singular/dual/plural), mood (indicative/subjunctive/
genitive) and in indefiniteness and definiteness (presence of the definite article). In
the above examples, the adjectives and the nouns that they modify disagree in both
mood and the indefiniteness and definiteness. Using these grammatical differences as
features in the data training phase will improve the task of differentiation between
adjectives and genitive nouns.

5 Conclusion

Tokenisation and POS tagging are two important tasks used at early stages of
named entity recognition systems. Whilst these tasks may be seem less challenging
when processing English texts, many challenges face their implementation for Arabic
texts because of the complex morphological structure of the Arabic language. This
paper has described some of these challenges encountered by the use of AMIRA to
tokenise and POS tag articles related to cancer extracted from the health
encyclopedia. The AMIRA tokeniser has achieved 91.22%, 87.15% and 89.13% for
precision, recall and F-measure, respectively, while AMIRA POS tagger achieved
84.09% accuracy. The most common errors in the tokeniser output were in the words
where the first letter after the ال (Al) determiner is ل (L). With respect to the POS
tagging, the areas where AMIRA underperformed include broken plurals, adverbs,

An Evaluation of AMIRA for Named Entity 29

adjectives and genitive nouns. Some of these errors can be addressed using machine
learning techniques which will be the subject for future work.

Acknowledgment

This research is supported by Aljouf University, Saudi Arabia and Staffordshire
University, UK.

References

Alkharashi, I. (2009) Person named entity generation and recognition for Arabic language.
In: Proceedings of the Second International Conference on Arabic Language Resources
and Tools, Cairo, pp.205–208.

Al-Shalabi, R., Kanaan, G., & Al-Serhan, H. (2003). New approach for extracting Arabic
roots. Paper presented at the International Arab Conference on Information Technology
(ACIT’2003), Alexandria, Egypt.

Alsughayr A. (2013) King Abdullah Bin Abdulaziz Arabic health encyclopedia
(www.kaahe.org): A reliable source for health information in Arabic in the internet. Saudi
J Med Med Sci; 1: 53-4

Benajiba, Y., & Paolo, R. (2007) ANERsys 2.0: Conquering the NER task for the Arabic
language by combining the maximum entropy with POS-tag information. In: Proceedings
of Workshop on Natural Language-Independent Engineering, 3rd Indian International
Conference on Artificial Intelligence (IICAI-2007), Mumbay, pp.1814–1823.

Buckwalter T. (2002) Buckwalter Arabic Morphological Analyzer Version 1.0 Linguistic
Data Consortium, University of Pennsylvania.

Buckwalter, T. (2004). Buckwalter Arabic morphological analyzer (BAMA) version 2.0.
linguistic data consortium (LDC) catalogue number LDC2004L02. ISBN1-58563-324-0.

Diab, M. (2009) Second Generation Tools (AMIRA 2.0): Fast and Robust Tokenization,
POS tagging and Base Phrase Chunking. Proceedings of the Second International
Conference on Arabic Language Resources and Tools, 2009.

Diab, M, Hacioglu, K., & Jurafsky, D. (2007) Arabic Computational Morphology:
Knowledge-based and Empirical Methods, chapter Automated Methods for Processing
Arabic Text: From Tokenization to Base Phrase Chunking.Kluwer/springer edition

Farghaly, A., & Shaalan, K. (2009) Arabic natural language processing: Challenges and
solutions. ACM Transactions on Asian Language Information Processing (TALIP),
pp.1–22.

Goweder, A., Poesio, M., De Roeck, A. N., & Reynolds, J. (2004). Identifying Broken
Plurals in Unvowelised Arabic Tex. In EMNLP (pp. 246-253).

Grishman, R., & Sundheim, B. (1996). Message Understanding Conference-6: A Brief
History. In COLING (Vol. 96, pp. 466-471).

S. Alanazi, B. Sharp, C. Stanier 30

Habash N. (2010) Introduction to Arabic Natural Language Processing. Synthesis Lecture
on Human Language Technologies. A Publication in the Morgan & Claypool Publishers
series, UAS.

Habash, N., Rambow, O., & Roth, R. (2009) MADA+TOKAN: A toolkit for Arabic
tokenization diacritization, morphological disambiguation, POS tagging, stemming and
lemmatization. In Proceedings of the 2nd International Conference on Arabic Language
Resources and Tools (MEDAR), Cairo, Egypt

Khoja, S. (1999) Stemming Arabic Text. Computing Department, Lancaster University,
Lancaster, U.K

Larkey, S., & Connell, E. (2001) Arabic Information Retrieval at UMass In TREC-10, The
Tenth Text Retrieval Conference, TREC 2001. Gaithersburg: NIST, 562-570

Manning, C. D. (2011). Part-of-speech tagging from 97% to 100%: is it time for some
linguistics?. In Computational Linguistics and Intelligent Text Processing (pp. 171-189).
Springer Berlin Heidelberg.

Mohamed, E., & Kübler, S. (2010) Arabic Part of Speech Tagging. In Proceedings of the
Seventh International Conference on Language Resources and Evaluation (LRE 2010C),
19-21 May, Valletta, Malta.

Peng, F., Feng, F., & McCallum, A. (2004). Chinese segmentation and new word
detection using conditional random fields. In Proceedings of the 20th international
conference on Computational Linguistics (p. 562). Association for Computational
Linguistics.

Sawalha, M. & Atwell, E. (2009) Linguistically Informed and Corpus Informed
Morphological Analysis of Arabic. In: Proceedings of the 5th International Corpus
Linguistics Conference CL2009, 20-23 July 2009, Liverpool, UK.

Sawalha, M., & Atwell, E. (2008). Comparative evaluation of arabic language
morphological analysers and stemmers. In Proceedings of COLING 2008 22nd
International Conference on Comptational Linguistics (Poster Volume)) (pp. 107-110).
Coling 2008 Organizing Committee.

Voutilainen, A. (2003) Part-of-speech tagging. In R. Mitkov, editor, The Oxford handbook
of computational linguistics. University Press, Oxford, pp. 219–232.

A Novel Stimulus and Analysis System for Studying the
Neural Mechanisms of Natural Language Processing in

the Human Brain

Alyssa Hwang1 and Sara Chung1

1Department of Neurology, New York University
Hwangalyssa16@gmail.com

Sarac234@gmail.com

Abstract. Traditional experiments on language perception in the human brain
used tightly controlled sets of stimuli, including short phrases and repetitions of
words to analyze the effects on neurological recordings. However, critics argue
that simple language stimuli outside the context of a conversation fail to capture
the full spectrum of linguistic complexity during natural speech. We present a
novel experimental strategy to study natural language use in epileptic patients
undergoing electrocorticography while watching a Hollywood movie that con-
tains many instances of natural interpersonal speech. Detailed analyses were
created based on the language components available, involving multisensory
speech and linguistic parsing of human language based on phonology, lexical
access, semantics, and syntax. This experimental system promotes a more com-
prehensive understanding of the neural implementation of speech by allowing a
shift from studying language in confined experimental conditions and introduc-
ing innovative approaches to studying the brain’s capacity for understanding
multimodal and naturalistic language.

1 Introduction

Remember that time you tried to understand a thick foreign accent? You might
have asked the speaker to repeat the sentence, speak more slowly, or enunciate each
syllable more clearly. You might have watched the speaker’s lips or looked for ges-
tures. This example illustrates the basic principles of communication: successful
speech perception encompasses the integration of visual and auditory cues. Auditory
cues are the more obvious stimuli related to speech, with one prime example being the
sound of the speaker’s voice. Visual cues consist primarily of the motions of the low-
er face, particularly the movements of the speaker’s lips. While auditory processing
plays a dominant role in understanding speech, the visual aspect also significantly af-
fects speech comprehension (Ross et al. 2007). The McGurk Effect shows powerful
evidence of this phenomenon: when the syllable /da/ is heard while the lip movement
for the syllable [ga] is seen, the syllable /ba/ is perceived (McGurk & MacDonald
1976). This is done by presenting a video in which the speaker says the syllable [ga]
accompanied with audio for the syllable /da/.

A. Hwang, S. Chung 32

In previous experiments, one variable would be manipulated while everything else
was held constant. The videos in these experiments often presented the image of just
the lower face accompanied by the sound of a single word or a syllable. A typical ex-
perimental video would be one in which the speaker’s lower face was shown repeat-
ing the word “house” three times. Although these experiments led to discoveries
about multisensory integration in the brain, they were not reflective of naturalistic
speech perception – a typical speech rate elicits up to ten words per second, with each
word made up of several syllables. Furthermore, these preliminary experiments show
little progress towards developing a method to monitor free behavior. Monitoring free
behavior would be the most effective way to collect data since the recordings would
not be altered due to experimental limitations. However, studying natural behavior in
a free environment is especially difficult considering the multitudes of inconsistent
environmental factors that obstruct quality experimental control (Dastjerdi et al.
2013).

Newer research has begun to find the specific time and location of neurological in-
tegration (Schepers 2014). Early studies have suggested that audiovisual integration
occurs as a late phenomenon, taking place after early separate analyses of the auditory
and visual unimodal signals. However, the most recent studies suggest that there may
be some early bimodal integration of these speech components. Further supporting
this claim, a recently published investigation of numerical processing in the parietal
cortex using electrocorticography and video recording revealed that areas of the brain
responsive to numerical words in controlled experiments are also responsive in free
behavior (Dastjerdi et al. 2013). Throughout this project, we endeavored to develop
methods that can allow us to answer questions such as: Are neural representations of
speech co-active in controlled experiments and free behavior? Are these experiments
indicative of social interactions? These types of research questions are novel and can
only be developed with the use of methodology like the one we describe here.

Such experiments were made possible by the improvement of brain imaging tech-
nology, such as functional magnetic resonance imaging (fMRI), positron emission
tomography (PET), and electrocorticography (ECoG). ECoG, also known as intracra-
nial electroencephalography or iEEG, is the most important equipment for our study
because it provides recordings directly from the brain surface, providing high spatial
(mm) and temporal (ms) resolution. One defining feature of ECoG is the high signal
to noise ratio by location of the electrodes that are directly on the cortex the brain. As
a result, wide frequency ranges are recorded using this method and have shown to be
more robust relative to less-invasive imaging methods such as fMRI and EEG.

While recording data from our subjects, high gamma band power was used as an
indicator of neuronal activity. High gamma waves are within 80-200 hertz, and any
oscillation that completes a phase in less than one second represents a high gamma
band. These frequencies correlate and reflect the firing of neuronal populations close
to the site of recording (UC Berkeley News). Recordings of lower frequency, 1-40
hertz, demonstrate local field potential and are less spatially selective but can be re-
corded from outside the head. High gamma waves are described in contrast to re-
cordings of lower frequencies to show a tight relationship to increase in frequency and
lower amplitude (UC Berkeley News). Because high gamma waves are very spatially
selective, a time-frequency plot can be created to see the hot spots caused by a stimu-

A Novel Stimulus and Analysis System 33

lus in a specific region of the brain. This is a very reliable way of seeing which ar-
eas of the brain are activated when subject to certain stimuli.

This project can be seen as an intermediate step between traditional controlled ex-
periments and free behavior monitoring. By using a movie to mimic normal conversa-
tion and a natural environment, we were able to collect data that represented a more
natural setting while closely monitoring and controlling the testing environment and
presentation. While the incidents of a natural environment are difficult to predict and
analyze, the usage of a movie simulator offers the opportunity to be manipulated, pre-
pared, and analyzed ahead of time while containing many aspects of natural environ-
ment, such as conversation, background noises, and music. The movie represents a
reality we can control.

2 Methods

We propose an innovative system for studying the neural correlates of natural lan-
guage processing by presenting and analyzing a complex stimulus set based on an
auditory-visual movie within the confines of a hospital setting. The movie file has
been manipulated to allow synchronization with the neural recordings. Post-hoc anal-
yses include, but are not limited to, investigations of auditory-visual speech integra-
tion and basic linguistic properties such as phonemes.

2.1 Movie Selection

The movie Zoolander, produced by Village Roadshow Pictures and VH1 Films
and running for 01:29:09 (hh:mm:ss) at 29 frames per second, was utilized as the con-
tinuous auditory-visual stimulus throughout this project. It was formatted as an
MPEG-4 file. This humorous movie was chosen because of its variety of personali-
ties, diversity of audio, visual, and audiovisual occurrences, and interactions between
characters.

2.2 Synchronization with Neural Data

In order to synchronize the movie to the electrocorticography (ECoG; also intrac-
ranial electroencephalography, iEEG) data to allow for temporal alignment of the au-
dio and visual input with the neural output, several photodiodes were embedded
throughout the film. Photodiodes are white dots accompanied by a short tone. Five
photodiodes an average of 48.5 milliseconds apart mark the beginning of the movie,
and ten photodiodes an average of 49.33 milliseconds apart indicate the end. 67 other
photodiodes are interspersed randomly throughout the movie, appearing approxi-
mately once per minute. The tones that accompany the white dots will be recorded by
the clinical system. The patient does not hear the tones because the audio is split: the
right channel plays the audio of the movie and the left channel plays the tones for
synchronization. These channels are analogous to earphone wires: the patient hears
sounds from the audio playing from the right “ear” while the audio from the left “ear”
is connected to the clinical system. The photodiodes are viewed by a sensor which
sends triggers to the clinical system that also records the iEEG data.

A. Hwang, S. Chung 34

2.3 Audiovisual Video Annotation
The conditions “audio only” and “audiovisual” were naturally occurring through-

out the movie. To simulate the condition “visual only,” three seconds of audio were
removed from the movie at forty separate instances. The audio sections that were re-
moved were spaced out equally throughout the film and only contained dialogue that
is not essential to the plot of the movie to avoid obfuscating the higher-level compre-
hension of the movie’s elements, and thereby confusing the patient.

We annotated the movie to find when each segment occurs in the movie by divid-
ing each instance of speech into one of the three conditions: audio only, visual only,
and audiovisual. We were able to do this by utilizing the software ELAN, which al-
lows the user to create annotations of media files in levels of representation, visual-
ized as tiers. The program was created by Max Planck Institute for Psycholinguistics,
The Language Archive, Nijmegen, The Netherlands. URL: http://tla.mpi.nl/tools/tla-
tools/elan/. The video file together with the audio file was uploaded into ELAN in or-
der to form the annotations.

Fig. 1. ELAN software displays the visual content of the movie (A), the three tiers with indi-
cated segments (B), a spectrogram for sounds and audio content (C), and the alignment of seg-
ments in relation to other tiers (D)

To mark the time segments in each condition, each instance of speech was manu-
ally tagged and organized into one of the tiers. A and AV time segments were marked
at the start of the auditory signal while V time segments were noted with the onset of
facial movement. The audio wave file was enlarged to 500% in ELAN for accuracy
while we were listening to the segments. A new segment was started whenever speech
paused for longer than two seconds or the speaker changed. The segments were be-
tween 0.084 seconds and 30.027 seconds long (average: 5.928s). Within the tiers
marked A, V, or AV, individual identities of the speakers were coded and noted as

A Novel Stimulus and Analysis System 35

Female A, Male A, Female B, Male B, etc. Throughout the entire movie, there
were 376 A segments, 47 V segments, and 740 AV segments, each to be synchronized
to epoch durations in the neural data.

2.4 Linguistic Analysis

The dialogue of the movie was transcribed by a combination of listening to the
audio and comparing notes with different sets of subtitles and scripts available online.
After transcribing the speech of the movie, the appropriate phonemes were found to
match up with the transcript using an automated process. Phonemes systematically
represent different sounds in human language. After transcribing the movie, the dia-
logue was separated into their A, V, or AV files to match the annotated segments. The
movie was divided into three sets of eight roughly even sections, A, V, and AV, to
keep the file sizes lower, more manageable, and organized.

FAVE-align, an automatic alignment program made by the University of Pennsyl-
vania Linguistics Lab, was used to align the transcript and phonemes of the segments
with the audio of the movie. Some words, such as “Zoolander,”not included in the al-
gorithm’s dictionary were added to it with the appropriate accompanying phonemic
transcription.

Finding the phonemic spelling for such unrecognized words was possible using
the same FAVE-align program with the option “Check transcription for unknown
words.” The phonemes were generated by the CMU Pronouncing Dictionary
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict) with the option “show lexical
stress.” Fragments, truncated words such as “Zoolan-,” were not recognized by
FAVE-align either. To resolve this issue, each fragment was given a code (F1, F2, F3,
etc …) and replaced by its code in the transcript. The code was then entered into the
dictionary file with its appropriate phoneme translation. The input for this software
was the TextEdit file for each segment, the .wav file containing its audio, and the
master dictionary TextEdit file. This returned the output: a TextGrid file indicating
the start and end times of each word and phoneme organized by character. This result-
ing TextGrid file was used as the input for a MATLAB script. The data concerning
the phonemes and their time lapses was extracted and represented in a simpler form
by an Excel spreadsheet. After receiving the TextGrid files, each was manually
checked to remove words that were misaligned with the audio.

Praat is a software that displays the audio wave, spectrogram, and TextGrid
alignment when the TextGrid and its correlating audio file are uploaded. To check if
the transcript and audio were lined up correctly, we listened to each individual word.
If a word was incorrect we removed it, replacing the word and its phonemes in the
TextGrid with “RM.” This reinforced the validity of the FAVE-align algorithm. This
was done for all components of the movie (audio only, visual only, and audiovisual).
 In total, there were 1,163 segments. The audio section had 376 segments, the visual
section had 47, and the audiovisual section had 740.

A. Hwang, S. Chung 36

Fig. 2. Praat displays a periodogram for audio content (A), a spectrogram of sound waveforms
(B), and the alignment of individual phonemes (C), as well as individual words and spaces (D)

3 Discussion

Here we present a novel procedure for studying the mechanics of natural language
processing. We have engineered a solution that allows the presentation of more natu-
ral speech stimuli to patients with brain electrode implants, their synchronization with
the neural iEEG recordings, and an in-depth classification of the auditory and visual
speech stimuli. This will allow future detailed and varied neurophysiological analysis
of free behavior language processing in the brain. The design and use of such a set-up
has not yet been reported in scientific literature and represents a step towards under-
standing how the brain processes language outside tightly controlled laboratory condi-
tions. The Society for Neurobiology of Language has recently organized at its annual
meeting a novel symposium entitled “A Neurobiology of Natural Language Use?’
(Society for the Neurobiology of Language) highlighting the novelty, relevance, and
interest by the scientific community in studying natural language. While recent meth-
odological developments in brain imaging techniques, such as functional magnetic
resonance imaging (fMRI), have made the study of natural language more feasible,
our method is the first to allow the use of powerful electrocorticography recordings
from brain implants in conscious and performing humans to predict the effects of
natural speech. The design and specific analysis of the stimulus set presented here,
together with the high trial count (in the current case, 1163 “trials”) afforded by in-
tracranial brain recordings, enable a neuroscience investigator to ask an almost unlim-
ited number of research questions related to language processing.

The parsing of the audio and video stimuli into linguistic segments at the sentence,
word, and phoneme level allows linguists to explore a great deal in regards to, but not
limited to, auditory-visual speech integration, phoneme-specific localization, lexical
access, semantics, and syntax. Careful research and application of the method we
created can lead to the discovery of specific locations of language processing in the
brain and more accurate interpretations of neuronal signals than in previous studies.
Our method could be further refined and modified to study free behavior in a natural
setting using the principles of neurocinematics. In the seminal study of neurocinemat-

A Novel Stimulus and Analysis System 37

ics, experimental data indicated that a group of people reacted similarly when
watching the same movie, and that the movie could “control” the viewers’ neural re-
sponses (Hasson et al. 2008). This idea could be applied to the study of free behavior
- people’s reactions and changes in brain activity to the same situation could be ob-
served. Current research already indicates that certain brain activity in the superior
temporal gyrus correlates to the phonetic features of the English language (Mesgarani
et al. 2014). Clearer understanding of linguistic processes in the human brain could be
used to create technology that predicts the words being thought. Further developments
could then be used to advance brain-computer interface technology. This technology
would be of substantial use and benefit for those with severe motor disabilities. Tech-
nology that can predict a person’s thoughts and translate neuronal signals into move-
ment would revolutionize the creation of Assistive Augmentative Communication de-
vices (AAC).

4 Acknowledgments

We thank Thomas Thesen, Paul Del Prato, Megan Marshall, and the rest of the
Department of Neurology at New York University for their insight, advice, and assis-
tance throughout the development of this paper.

References

Altieri, Nicholas. "Audiovisual Integration: An Introduction to Behavioral and Neuro cog-
nitive Methods." US National Library of Medicine National Institutes of Health. N.p., n.d.
Web. 16 Sept. 2014. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775457/>.

Brill, Eric. Transformation-Based Error-Driven Learning and Natural Language Process-
ing: A Case Study in Part-of-Speech Tagging. N.p.: n.p., n.d. Association for Computa-
tional Linguistics. Web. 22 Sept. 2014. <http://www.aclweb.org/anthology/J95-4004>.

Calvert, Gemma A., and Thomas Thesen. "Multisensory Integration: Methodological Ap-
proaches and Emerging Principles in the Human Brain." Journal of Physiology - Paris
(2004): n. pag. Print.

Dastjerdi, Mohammad, et al. "Numerical Processing in the Human Parietal Cortex during
Experimental and Natural Conditions." Nature Communications (2013): n. pag. Print.

Hasson, Uri, et al. Neurocinematics: The Neuroscience of Film. N.p.: n.p., 2008. Print.

Hill, NJ, et al. Recording Human Electrocorticographic (ECoG) Signals for Neuroscien-
tific Research and Real-Time Functional Cortical Graphing. N.p.: n.p., n.d. National Cen-
ter for Biotechnology Information. Web. 22 Sept. 2014. <http://www.ncbi.nlm.
nih.gov/pubmed/22782131>.

McGurk, H., & McDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746–
747.

A. Hwang, S. Chung 38

Mesgarani, N., et al. Phonetic Feature Encoding in Human Superior Temporal Gyrus.
N.p.: n.p., 2014. National Center for Biotechnology Information. Web. 25 Sept. 2014.
<http://www.ncbi.nlm.nih.gov/pubmed/24482117>.

Navarra, Jordi, et al. "Multisensory Interactions in Speech Perception." The New Hand-
book of Multisensory Processing. Ed. Barry E. Stein. N.p.: n.p., 2012. N. pag. Print.

Reale, R. A., et al. Auditory-Visual Processing Represented in the Human Superior Tem-
poral Gyrus. N.p.: n.p., n.d. NYU Langone Medical Center. Web. 16 Sept. 2014.
<http://www.med.nyu.edu/thesenlab/wp-
content/uploads/2014/04/reale_etal_neurosc_2007.pdf>.

Ross, Lars A., Dave Saint-Amour, Victoria M. Leavitt, Daniel C. Javitt, and John J. Foxe.
"Do You See What I Am Saying? Exploring Visual Enhancement of Speech Comprehen-
sion in Noisy Environments." Cerebral Cortex 17 (2007): 1147-153. Print.

Sanders, Robert. "Slow Brain Waves Play Key Role in Coordinating Complex Activity."
UC Berkeley News. N.p., n.d. Web. 22 Sept. 2014. <http://berkeley.edu/news/media/
releases/2006/09/14_theta.shtml>.

Schepers, Inga M., Daniel Yoshor, and Daniel S. Beauchamp. Electrocorticography Re-
veals Enhanced Visual Cortex Responses to Visual Speech. N.p.: n.p., 2014. Print.

Sinclair, John M. "The Automatic Analysis of Corpora." Directions in Corpus Linguistics.
By Mouton De Gruyter. Ed. Jan Svartvik. N.p.: n.p., n.d. Google Books. Web. 22 Sept.
2014.

 Society for the Neurobiology of Language. N.p., n.d. Web. 25 Sept. 2014.
<http://www.neurolang.org/symposium/>.

The Selection of Classifiers for a Data-driven Parser

Sardar Jaf1, Allan Ramsay1

1The University of Manchester, Faculty of Engineering and Physical Sciences, School of
Computer Science, Manchester, United Kingdom

{sardar.jaf, allan.ramsay}@manchester.ac.uk

Abstract. There is a large number of classifiers that can be used for generating
a parse model; i.e., as an oracle for guiding data-driven parsers when parsing
natural languages. In this paper we present a general and simple approach for
generating a parse model. Additionally, we present a large number of experi-
ments on various classifiers. We also present the effect of various parse models,
which are generated from different classifiers, on a data-driven parser to see the
way each model contributes to parsing performance.

1 Introduction

The objective of this study is to present an approach for generating different parse
models, which are used for guiding parsers during natural language parsing, from
different machine learning classifiers. There are various classification algorithms that
can be used for this purpose. However, different classifiers may learn from a set of
data differently, which means that they may affect parsing performance in different
ways. In Section 2 we present a data-driven parser that we have used for examining
the effectiveness of different parse models, which are generated from different classi-
fiers. In Section 3 we show a simple approach for generating a parse model from the
J48 classifier while in Section 5 we show the accuracy of a large number of classifi-
ers. Section 6 covers the effect of each parse model on parsing performance. Finally,
in Section 7 we compare our parser with the arc-standard algorithm of MaltParser.

2 A Data-driven Shift-Reduce Parser

Our parser is based on the arc-standard algorithm of MaltParser (Kuhlmann and
Nivre, 2010). This algorithm deterministically generates dependency trees using two
data-structures: a queue of input words, and a stack of items that have been looked at
by the parser. Three parse actions are applied to the queue and stack: SHIFT, LEFT-
ARC and RIGHT-ARC (we will write LA and RA for LEFT-ARC and RIGHT-ARC
respectively to save space). SHIFT moves the head of the queue onto the top of the
stack, LA makes the head of the queue a parent of the topmost item on the stack and
pops this item from the stack, and RA makes the topmost item on the stack a parent of
the head of the queue; RA removes the head of the queue and moves the topmost item
on the stack back to the queue. MaltParser uses a support vector machine classifier for

S. Jaf, A. Ramsay 40

generating a parse model from a set of parsed trees, which is used for predicting the
next parse action given the current state of the parser.

We will call our parser NDParser. At each parse step, we generate a state for LA,
RA, and SHIFT, and we will assign different scores to each state. For example, a score
is computed for each newly generated state by computing two different scores: (i) a
score that is based on the recommendation made by a parse model. For instance, when
generating a SHIFT state the parser gives a score of 1 if a SHIFT operation is recom-
mended by the model. Otherwise a score of 0 is given (and the same applies to LA and
RA). (ii) The score of the state that the new state is derived from. The sum of these two
scores is then assigned to the newly generated state. The advantage of assigning a score
to a parse state is that we can rank a collection of parse states by using their scores and
then process the state with the highest score. In order to efficiently process a potentially
large set of states, we use dynamic programming for ranking competing states with
respect to their plausibility (the plausibility of a state is based on its score.) The ranked
states are then stored in a chart table (Kay, 1973) and the most plausible state is ex-
plored by the parser, where new states are generated by using SHIFT, LA, and LR op-
erations. This way we combine features of chart parsing with shift-reduce parsing.

3 The Generation of a Parse Model

The effectiveness of a parse model largely depends on the classifier's ability to cor-
rectly classify a Treebank. The Penn Arabic Treebank (Maamouri and Bies, 2004),
which we converted it to Dependency format, was used for parser training and testing.
We have experimented with several classifiers that are available in the `WEKA' tool-
kit (Hall et al., 2009) for classifying a set of training data. The output of each classi-
fier is then used for generating a parse model, which is then used for examining the
effect of each model on parsing performance. The following steps explain a general
and simple approach for generating a parse model from a dependency Treebank:

Step 1. Forced parsing: we use a shift-reduce parser for parsing the training data,
which contains the parsed trees of each sentence. The parsed tree of each sentence are
used as a grammar to parse the sentence, which is used as a guide to parse the sen-
tence and record parse states during training.

Step 2. Collecting parse states: during training we obtain a set of parse states, i.e.,
state:action pairs where the condition is the state of the queue and stack (i.e., the items
on the queue and stack) and the action is the parse operation that the parser performed
(which is either SHIFT, LA, or RA). Consider, for instance, the parsed tree in Fig. 1
for the sentence ‘the cat sat on the mat’.

Fig. 1. Dependency tree for the sentence ‘the cat sat on the mat’

 sat

cat

the

On

mat

the

The Selection of Classifiers for a Data-driven Parser 41

Fig. 2 shows the transitions that the parser uses for producing the tree for the sen-
tence ‘the cat sat on the mat'. Note that whilst constructing the training data we will
not perform any LA or RA operations if a dependency daughter is the head of an item
that is not inspected yet, as illustrated from step 6 of Fig. 2 where we perform SHIFT
instead of RA, since performing RA at this point would make it impossible to later
make on the head of mat because RA would remove on from the queue, which would
prevent it from becoming the head of mat which is still on the queue.

Dependency relations: (sat>cat) (sat>on) (cat>the) (on>mat) (mat>the)
--
Steps Action Queue Stack Arcs
--
1 - [the,cat,sat,on,the,mat] [] -
2 SHIFT [cat,sat,on,the,mat] [the] -
3 LA [cat,sat,on,the,mat] [] A1=(cat>the)
4 SHIFT [sat,on,the,mat] [cat] A1
5 LA [sat,on,the,mat] [] A2=A1+(sat>cat)
6 SHIFT [on,the,mat] [sat] A2
7 SHIFT [the,mat] [on,sat] A2

Fig. 2. Parse states when parsing the sentence ‘the cat sat on the mat’

We can treat the sequences shown in Fig. 2 as a set of data-points which indicate

what the parser should do in a given state -- for instance, in a situation like in step 6 in
Fig. 2 the parser should use SHIFT instead of RA for the reason explained above.

Given a set of such data-points, it is possible to extract and record the parse states
and train a classifier for building a parse model, which can be used for predicting
parse operation; i.e., it can be used for guiding the parser. The task here is to classify
intermediate states of the parser into three groups: cases where SHIFT should be
performed, cases where LA should be performed, and cases where RA should be
performed.

Step 3. Preparing recorded parse states for classification: from the set of parse
states that we obtained in step 2, we populate an .arff file with the correct data format,
i.e., the format that is accepted by WEKA. An example of a set of WEKA-style data
format is shown in Fig. 3, which is based on the parse states shown in Fig. 2. Here we
have extracted the word forms as a feature for learning but it is possible to use a num-
ber of different features (such as POS tags, word position etc.) as values for the queue
and the stack attribute parameters.

@relation states
@attribute queue_word_pos_1 {‘the’, ‘cat’, ‘sat’, ‘on’, ‘mat’, ‘-’ }
@attribute queue_word_pos_2 {‘cat’, ‘sat’, ‘on’, ‘the’, ‘mat’, ‘-’}
@attribute stack_word_pos_1 {‘-’,‘the’, ‘cat’, ‘sat’, ‘on’}
@attribute stack_word_pos_2 {‘-’, ‘sat’, ‘on’}
@attribute parse_action {‘SHIFT’, ‘LEFT-ARC’, ‘RIGHT-ARC’}
@data

S. Jaf, A. Ramsay 42

‘the’, ‘cat’, ‘-’, ‘-’, ‘SHIFT’
‘cat’, ‘sat’, ‘the’, ‘-’, ‘LEFT-ARC’
‘cat’, ‘sat', ‘-’,‘-’’SHIFT ’
‘sat’, ‘on’, ‘cat', ‘-’, ‘LEFT-ARC’
 …

Fig. 3. An example of data for an .arff file

Additionally, one can use many different window sizes for the queue and the stack

in the data selection as instances for the classification algorithms to learn from. In Fig.
3. we use a window size of two items for the queue and two items for the stack, while
the dash mark (‘-’) represents an empty item where the queue or the stack did not
contain an item in the given position.

Step 4. Training a classifier using the .arff file: we supply WEKA with the data
prepared in step 3 (i.e., the .arff file) and then we select a classification algorithm for
learning. Fig. 4. is an example of the J48 classification algorithm output from WEKA.

Step 5. Generating a parse model from the classification output: finally, we convert
the output produced by the classification algorithm to an appropriate state-action
model, which is used for guiding the parser to parse new sentences. Fig. 5. is a sample
of some states and actions we have extracted from the J48 (Quinlan, 1992) classifier's
output.

Satck_word_pos_1 = ?: SHIFT (8430.0)
Stack_word_pos_1 = ABBREV
| queue_word_pos_1 = ABBREV
| | queue_word_pos_2 = ?: RIGHT-ARC (6.0)
| | queue_word_pos_2 = ABBREV
| | | queue_word_pos_3 = ?: RIGHT-ARC (5.0)
| | | queue_word_pos_3 = ABBREV: RIGHT-ARC (2.0)
…

Fig. 4. An example of the J48 algorithm output using WEKA

states(
QUEUE,
STACK, [
word_pos(STACK, 1, ‘-’), ‘SHIFT’,
word_pos(STACK, 1, ‘ABBREV’), [
word_pos(QUEUE, 1, ‘ABBREV’), [
word_pos(QUEUE, 2, ‘-’), ‘RIGHT-ARC’,
…]]]]]).

Fig. 5. An example of a state-action model

The Selection of Classifiers for a Data-driven Parser 43

4 Label Assignment to Dependency Relations

In this section we show the way we assign labels to dependency relations, which is
largely different from the way this is implemented in the standard implementation of
MaltParser. As in the arc-standard algorithm, for each dependency relation between
two words, a label is attached to indicate the grammatical function of the daughter
item with its parent. However, the way we assign labels to dependency relations dur-
ing parsing is that we extract patterns from the training data during the training phase.
This contrasts with the approach used in MaltParser whereby labels are predicted with
the LA and RA actions of the parser which are learned during the training phase.

Each pattern consists of a dependency parent, a list of n part-of-speech (POS)
tagged items, a dependency daughter, a label, and the frequency of the pattern in the
training data. A schema of a pattern is shown in Fig. 6. The first element of the pat-
tern is a parent item, the second is a list of up to n POS tagged items between a parent
item and its daughter in the original text, the third is the daughter of a parent item, the
fourth element is the label for the dependency relation and the last element is the
frequency of the pattern recorded during training. Fig. 6. shows the pattern when
PARENT is assigned as the parent of DAUGHTER where there are up to n POS
tagged items between them then their dependency label is LABEL, and the last ele-
ment indicates that the pattern occurred j times during training.

PARENT, [POS1,...,POSn], DAUGHTER, LABEL, j

Fig. 6. A schema of a pattern for a label

During the evaluation phrase, we show three different parsing accuracy measures,

those are: (i) Labelled Attachment Scores (LAS), which is the percentage of the cor-
rect dependency relations with the correct labels of the dependency relations
(DEPREL) between tokens; (ii) Unlabelled Attachment Score (UAS), which is the
percentage of correct dependency relation (i.e., the percentage of tokens with correct
heads) regardless of the DEPREL; and (iii) Labelled Scores (LS) which is the per-
centage of tokens with the correct dependency label.

5 Evaluating Different Classifiers

Table 1 contains the accuracy of various classifiers that were used for classifying
the training data that we have mentioned in Step 2 of Section 3. We consider a classi-
fier appropriate for producing a parse model if it meets two requirements: (i) it pro-
duces good classification accuracy. Although the accuracy of the classifiers that are
presented in Table 1 may not directly reflect the accuracy of a parser that uses its
recommendations but, a classifier that produces a high level of accuracy is more
likely to assist a parser to make more informed parse decisions at each parse step than
a classifier that produces a low level of accuracy; and (ii) its output can be used for
generating a parse model which can be used for making recommendations to a data-

S. Jaf, A. Ramsay 44

driven parser, for example, what action (SHIFT, LA, or RA) the parser should take in
a specific situation. We have used various features for training different classification
algorithms. These features included POS tags, word forms, word locations in sen-
tences, their spans (i.e., their start and end positions in sentences). Additionally, we
have used a combination of these features such as word forms with POS tags, word
forms with word location or word spans, and similar combination of POS tags with
other features. Also, various window sizes are used for the queue and stack, ranging
between two items to four items. The use of these features for training each classifier
along with the classification accuracy is presented in Table 1. Previous experiments
by Jaf and Ramsay (2013) indicated that using a window size of more than four items
on the queue or stack did not yield better results, hence we have used up to four items
in this experiment.

Table 1. Classification accuracy with various feature and setting. W = Word, Loc =
Item location in sentence, POS = part-of-speech tags, and Span = start and end posi-
tion of a word

J48

Items on Queue 2 3 3 3 4 4 4
Items on Stack 4 2 3 4 2 3 4
W (%) 68.24 68.29 68.37 68.53 68.56 68.67 68.81
W + Loc (%) 71.92 72.23 71.88 71.67 72.41 72.11 71.80
W + Loc + span (%) 71.73 72.76 72.25 72.00 72.87 72.45 72.17
W + span (%) 70.17 70.81 70.64 70.43 70.83 70.79 70.56
POS (%) 84.94 85.63 85.77 85.80 85.89 86.05 86.04
POS + Loc (%) 85.27 85.89 85.91 85.92 86.96 86.08 86.09
POS + Loc + span (%) 85.23 85.81 85.84 85.92 85.95 85.97 85.99
POS + span (%) 85.00 85.71 85.69 85.67 85.88 85.88 85.88
W + POS (%) 85.28 86.23 86.24 86.24 86.46 86.47 86.39
W + POS + Loc (%) 85.83 86.57 86.53 86.45 86.63 86.57 86.54
W + POS + Loc + span (%) 85.83 86.48 86.54 86.47 86.49 86.55 86.44
Word + POS + span (%) 85.79 86.50 86.45 86.43 86.53 86.49 86.36

LiBSVM
Items on Queue 2 3 3 3 4 4 4
Items on Stack 4 2 3 4 2 3 4
W (%) - - - - - - -
W + Loc(%) - - - - - - -
W + Loc + span (%) - - - - - - -
W + span (%) - - - - - - -
POS (%) 74.62 75.41 75.43 75.39 75.62 75.63 75.55
POS + Loc (%) - - - - - - -
POS + Loc + span (%) - - - - - - -
POS + span (%) - - - - - - -
W + POS (%) - - - - - - -
W + POS + Loc (%) - - - - - - -
W + POS + Loc + span (%) - - - - - - -
W + POS + span (%) - - - - - - -

Id3
Items on Queue 2 3 3 3 4 4 4
Items on Stack 4 2 3 4 2 3 4
W (%) 67.65 67.94 67.77 67.68 67.97 67.79 67.62
W + Loc (%) 62.37 65.22 63.04 61.89 64.41 62.55 61.49

The Selection of Classifiers for a Data-driven Parser 45

W + Loc + span (%) 62.69 64.85 63.18 62.26 64.23 62.79 62.00
W + span (%) 61.21 63.60 61.84 60.71 62.81 61.25 60.36
POS (%) 81.64 83.41 81.78 80.54 81.47 79.70 78.81
POS + Loc (%) 74.57 75.48 75.04 74.95 74.83 74.65 74.61
POS + Loc + span (%) 74.51 75.42 74.92 74.83 74.85 74.63 74.57
POS + span (%) 74.28 75.17 74.71 74.59 74.64 74.41 74.33
W + POS (%) 81.02 82.89 81.29 80.36 81.04 79.67 79.09
W + POS + Loc (%) 74.96 75.73 75.39 75.33 75.29 75.07 75.04
W + POS + Loc + span (%) 74.79 75.64 75.22 75.15 75.21 75.00 74.93
W + POS + span (%) 74.55 75.45 75.04 74.97 75.04 74.81 74.73

RandomTree
Items on Queue 2 3 3 3 4 4 4
Items on Stack 4 2 3 4 2 3 4
W (%) 68.00 68.27 68.26 68.32 68.47 68.51 68.50
W + Loc (%) 70.25 70.64 69.35 68.67 70.19 69.36 69.83
W + Loc + span (%) - 70.27 - - 69.97 - -
W + span (%) 67.46 68.99 68.25 67.39 68.67 67.79 67.89
POS (%) 83.71 85.28 84.71 84.26 84.78 84.31 83.69
POS + Loc (%) 79.18 81.41 80.15 78.84 80.09 78.18 80.12
POS + Loc + span (%) 76.32 79.41 78.02 76.26 78.79 77.42 76.47
POS + span (%) 79.19 80.89 78.69 77.78 79.93 77.28 76.95
W + POS (%) 83.62 85.37 84.34 83.57 84.46 83.33 83.28
W + POS + Loc (%) 80.10 81.84 80.62 79.17 80.27 79.03 77.99
W + POS + Loc + span (%) 77.3 79.59 77.50 76.33 78.09 76.77 75.02
W + POS + span (%) 78.42 80.58 77.87 77.34 78.95 76.87 77.17

NaiveBayes
Items on Queue 2 3 3 3 4 4 4
Items on Stack 4 2 3 4 2 3 4
W (%) 60.13 65.95 65.48 63.37 65.06 64.68 64.60
W + Loc (%) 57.02 64.12 57.03 55.68 62.21 54.67 52.74
W + Loc + span (%) 49.98 47.29 44.51 47.60 45.28 42.79 45.28
W + span (%) 53.47 55.32 48.75 51.09 52.30 46.46 48.57
POS (%) 70.42 76.78 76.19 74.02 76.01 75.38 74.17
POS + Loc (%) 64.05 74.70 71.13 67.13 72.39 70.68 67.1
POS + Loc + span (%) 58.43 65.72 58.22 57.11 61.27 55.49 54.24
POS + span (%) 61.15 70.93 65.13 61.31 67.62 63.37 59.63
W + POS (%) 66.00 74.67 73.66 71.04 72.12 72.21 71.02
W + POS + Loc (%) 62.25 72.50 69.20 63.57 69.13 67.89 62.70
W + POS + Loc + span (%) 57.62 64.58 56.72 55.55 59.78 53.95 52.73
W + POS + span (%) 59.98 69.69 62.84 59.08 65.33 60.50 56.89

During the evaluation of the classifiers, some widely used classifiers did not yield
encouraging results. For example, the LiBSVM classifier (Chang, 2001) which is
used in MaltParser did not perform well with the set of features that we have supplied.
It only managed to learn successfully from one feature (POS tags), while the accuracy
was well below the accuracy of some of the other classifiers. The entries for LiBSVM
in Table 1 are incomplete because training takes so long (3 days per case) that future
experiments seemed infeasible. However, the fact that it produces no better classifica-
tion than the J48 classifier in the cases that we have looked at suggests that it is
unlikely to substantially outperform it in the remaining cases.

From the large number of experiments we have conducted on several classifiers,
we will evaluate NDParser on them in the following section.

S. Jaf, A. Ramsay 46

6 Evaluating NDParser with Various Classifiers

As presented in Table 2 the classification accuracy varies because each classifier
learns differently from the set of training data. In this section, we investigate the ef-
fect of different classifiers on parsing. Our objective is to identify the classifiers that
help the parser perform best in terms of accuracy and speed (We measure speed as the
number of seconds per dependency relation). These experiments also highlight
whether different parsing models, which are generated by using different classifiers,
contribute in different ways to parsing performance. The optimal classification of
accuracy may not necessarily lead to optimal parsing performance. Hence, it is neces-
sary to investigate the effectiveness of different classifiers parsing performance.

Table 2. Parser evaluation with different classifiers, features and settings. Q = Queue
size, S = Stack size, POS = part-of-speech tags, RT = RandomTree

Classifier Features Q S UAS (%) LAS(%) LS(%) Spee

dJ48 POS 4 3 74.5 71.0 93.6 0.081
J48 POS 4 4 74.1 70.5 93.6 0.086
J48 POS + location 4 2 70.3 67.0 93.3 0.146
J48 POS + location + span 4 4 69.2 65.9 93.3 0.161
J48 POS + span 4 2 70.6 67.2 93.3 0.145
J48 POS + span 4 3 70.8 67.4 93.3 0.150
J48 POS + span 4 4 70.9 67.5 93.3 0.142
J48 Words + POS 4 3 71.4 67.9 93.5 0.096
J48 Words + POS + location 4 2 69.9 66.5 93.4 0.140
J48 Words + POS + location + span 4 3 68.0 64.8 93.1 0.183
J48 Words + POS + span 4 2 69.8 66.5 93.3 0.161

RT POS 3 2 70.9 69.4 93.3 0.141

RT POS + Location 2 1 68.6 65.5 92.9 0.154
RT POS + Location + span 2 1 67.8 68.1 92.3 0.181
RT POS + span 2 1 68.2 65.8 92.3 0.181
RT Words + POS 2 2 70.0 66.6 92.3 0.196
RT Words + POS + location 2 1 68.7 65.3 92.4 0.198
RT Words + POS + location + span 2 1 66.8 63.6 92.1 0.196
RT Words + POS + span 2 1 68.6 65.3 92.3 0.184

Id3 POS 3 1 70.6 67.2 93.4 0.083

Id3 Words + POS 2 2 68.1 64.8 93.3 0.099

From Table 1 we can identify the classification algorithms with the highest degree

of accuracy. In this section, we trained NDParser using J48, RandomTree, and Id3
algorithms since they all classified the same set of training data with over 80% accu-
racy. For each of these algorithms we use the same settings that produced the optimal
accuracy. For example, based on the results in Table 1 we will use the POS tags as a

The Selection of Classifiers for a Data-driven Parser 47

training feature for the J48 algorithm with four items on the queue and three items on
the stack because with this setting the algorithm produced 86.05% accuracy, while if
we are using POS tags and their locations in a sentence as training features for J48
algorithm then we will use four items on the queue and two items on the stack be-
cause the algorithm performs best with this setting, which produced 86.96% accuracy.

The results of the evaluation of our parser are presented in Table 2. The best pars-
ing performance is achieved when training the parser using the J48 classification
algorithm on only POS tags as a feature and the window size for the queue and stack
is four and three items respectively. The experiments in Table 1 show that training a
classifier using a small set of features produces relatively similar classification accu-
racy to using a larger set of features. However, using a smaller set of features im-
proves the parsing accuracy and speed.

7 A Comparison with the State-of-the-art Parser

In this section, we compare our parser with MaltParser, as shown in Table 3 where
we have conducted a 5-fold cross validation on both parsers. We have trained our
parser using the J48 classifier with POS tags as features and a window size of four
items on the queue and three items on the stack. We can note that our parser is 43%
more efficient than MaltParser. Although the unlabelled attachment score of our
parser is slightly lower than that of MaltParser (0.7%), the labelled attachment score
and the labelled accuracy is more accurate than MaltParser by 1% and 1.4% respec-
tively. We believe that this improved accuracy of labelled attachment score and la-
belled score is because our parser have information about intermediate items between
parent and daughter, which are collected during training (see Section 4 for more de-
tails) where such information is not available to MaltParser. MaltParser learns models
that contain information about parent and daughter relations and their labels during
the training phase where the information about the intermediate items between parents
and daughters that we use is not recorded.

Table 3. Parser performance of MaltParser and NDParser

Parser UAS(%) LAS(%) LS(%) Speed
MaltParser 75.2 70.0 92.2 0.144
NDParser 74.5 71.0 93.6 0.081

The results for MaltParser in Table 3 were obtained by training and testing it on the

dependency trees that we extracted from the PATB. The structure of these trees de-
pends on the head-percolation table that is used during the conversion process. It is
likely that this underlies the differences between our results for MaltParser and the
results published by Nivre (2008) (77.76% for UAS, 65.79% for LAS, and 79.30%
for LS), where Niver’s result for UAS is slightly better than the one we obtained in
this study, for LAS and LS they are slightly worse.

S. Jaf, A. Ramsay 48

8 Conclusions

In this paper we have presented a simple approach for evaluating and generating
parse models from various machine learning classifiers. We have shown that generat-
ing a parse model, which is used for guiding data-driven parsers, from different classi-
fiers affects parsing performance in different ways. We have discovered that generat-
ing a parse model using a small set of features and settings improves parsing accuracy
and speed compared with using large features and settings. We have presented a basic
shift-reduce parser, which is based on the arc-standard algorithm of MaltParser, and
we have evaluated our parser with various parse models that were generated from
different classification algorithms, features and settings.

Acknowledgment

This work was funded by the Qatar National Research Fund (grant NPRP 09-046-
6-001).

References

Chang, C.-c. and Lin, C.-J. (2001), Libsvm: A Library for Support Vector Machines. ACM
Trans. Intell. Syst. Technol. 3(2):1-27.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Written, I. H.,
(2009), The weka data mining software: An update, SIGKDD Explorations. Newsl,
11(1):10-18.

Kuhlmann, M. and Nivre, J., (2010), Transition-Based Techniques for Non-Projective
Dependency Parsing, Northern European Journal of Language Technology, 2(1):1-19.

Nivre, J. (2008), Algorithms for deterministic incremental dependency parsing, Computa-
tional Linguistics, 34(4): 513-553.

Kay, M. (1973) The MIND System. In Rustin R. (Ed) Natural Language Processing,
pp. 155–188. Algorithmics Press, New York.

Jaf, S. F. and Ramsay, A. (2013), Towards the Development of a Hybrid Parser for Natural
Languages. In Jones, A. V. and Ng, N., editors, 2013 Imperial College Computing Student
Workshop, volume 35 of Open Access Series in Informatics (OASIcs), Dagstuhl, Germany.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Pp. 49–56.

Maamouri, M. and Bies, A. (2004) Developing an Arabic treebank: methods, guidelines,
procedures, and tools. In Proceedings of the Workshop on Computational Approaches to
Arabic Script-based Languages. Geneva, pp. 2–9.

Nivre, J., Hall, J. and Nilsson, J. (2006), MaltParser: A Data-Driven Parser-generator for
Dependency Parsing, In Proceedings of LREC.

The Selection of Classifiers for a Data-driven Parser 49

Nivre, J., Rimell, L., McDonald, R. and Gomez-Rodr´ıguez, C. (2010), Evaluation of
dependency parsers on unbounded dependencies. In Proceedings of the 23rd International
Conference on Computational Linguistics, COLING’10. Beijing, pp. 833–841.

Quinlan, J. R., (1992), Learning with continuous classes, In Proceedings of the 5th Austra-
lian Joint Conference on Artificial Intelligence. Sydney. pp. 343–348.

Jasnopis – A Program to Compute Readability of Texts
in Polish Based on Psycholinguistic Research1

Łukasz Dębowski1, Bartosz Broda1, Bartłomiej Nitoń1, and Edyta Charzyńska2

1 Polish Academy of Sciences, Institute of Computer Science,
ul. Jana Kazimierza 5, 01-248 Warsaw, Poland

ldebowsk@ipipan.waw.pl
bartosz.broda@gmail.com
bartek.niton@gmail.com

2 University of Silesia, Institute of Pedagogy

ul. Grażyńskiego 53, 40-126 Katowice, Poland
edyta.charzynska@us.edu.pl

Abstract. Readability of a text is a measure how difficult the text is to
understand on average. The aim of the present paper is twofold. First, we have
determined through a psychological experiment and statistical data analysis
how readability of texts in Polish depends on syntactical and lexical statistics of
the texts. Second, we have implemented a computer program, called Jasnopis,
which computes readability of a given text according to the developed formula
and suggests how to make the text easier to comprehend.

1 Introduction

Texts that circulate in public discourse, such as fairy tales, press articles, legal
acts, or scientific articles, vary with respect to their ease of reading, called readability.
Some degree of text difficulty stems from an intention of communicating complex
meanings, but ideally we would expect that the intended ideas were put across as sim-
ply as possible. The reality is far from this ideal state. We are surrounded by more
and more complex texts, such as legal decisions or medical leaflets, which we are
supposed to understand. Unfortunately, these important texts are difficult to under-
stand to nonspecialists, for they are written using a specific language register and
contain very long sentences or highly specialized terms. We think that there is a need
for a computer application that would help to measure how difficult a given text is to
comprehend and would suggest possible ways of simplifying it. Consequently, in this
paper we propose a computational method of predicting readability of texts in Polish.

1 The research reported in this paper has been funded by the NCN grant “Mierzenie stopnia
zrozumiałości polskich tekstów użytkowych” no. 2011/03/BHS2/05799.

Ł. Dębowski, B. Broda, B. Nitoń, E. Charzyńska 52

A great deal of research concerning readability of texts has been already done for
English. Since the end of 19th century, researchers in the United States have been
interested in variation of texts with respect to their ease of understanding (Sherman,
1893). In the 1920's the interest of readability researchers shifted towards practical
application such as assessing difficulty of textbooks and adjusting them to progress-
ing abilities of schoolchildren. Hence, various empirical formulas have been proposed
that allowed to estimate readability of a text given its certain statistics (Lively and
Pressey, 1923; Washburne and Vogel, 1928; Lewerenz, 1929; Patty and Painter,
1931). The next decade brought interest in measuring actual understanding by adults
through psychological tests and using results of the experiments to scale and improve
readability formulas (Dale and Tyler, 1934; Gray and Leary, 1935). In 1940's, Lorge
(1944a,b) and Flesh (1948) observed that readability can be predicted surprisingly
well using only two or three statistics related to syntactical and lexical text complex-
ity, such as the average sentence length (ASL) and the average word length (AWL).
Let us observe that restricting ourselves to the AWL, we would treat the text as a bag
of words. In contrast, taking into account the ASL, we indirectly measure also the
complexity of syntax, which is a desirable property.

An example of a simple readability predictor is the Flesh formula (Flesh, 1948):

Text Readability = 206.835 – 1.015 * ASL – 84,6 * AWL, (1)

where ASL – average sentence length (in words), AWL – average word length (in
syllables). The readability index given above ranges between 100 (a very simple text)
and 0 (a very difficult text). Many more similar readability formulas have been advo-
cated by various researchers since then (Dale and Chall, 1948; Gunning, 1952;
McLauglin, 1969; Caylor et al., 1973; Kincaid et al., 1975). The FOG index by Gun-
ning (1952) became particularly famous. It reads:

Fog Index = 0.4 * (ASL + PHW), (2)

where ASL – average sentence length (in words), PHW – percentage of words longer
than two syllables. Two other popular readability indices are ARI (Senter and Smith,
1967) and LIX (Bjornsson, 1968). ARI (Automated Readability Index) was proposed
for English and it reads ARI = – 21.43 + 0.5 * ASL + 4.71 * AWL, where ASL –
average sentence length (in words), and AWL – average word length (in characters).
In contrast, LIX (Lasbarhetsindex) was designed for Swedish and it reads LIX = ASL
+ PHW, where ASL – average sentence length (in words) and PHW – percentage of
words longer than 6 letters.

As we can see, each of the proposed readability formulas uses a bit different text
statistics, with different coefficients, and returns values in a different range. Thus,
there is a problem of putting readability indices onto a common human-readable
scale. To overcome this problem, Dale and Chall (1948) proposed to scale readability
index according to the number of years of education that is needed by the intended
reader of the text. Another way of putting the readability index onto a common scale
is to use some standardized and universal psychological test of text understanding and
to construct the best predictor of this test based on text statistics. In fact, Taylor
(1953, 1956) developed a method, called the Cloze test, which seems to measure how
well human subjects understand a given text. The Cloze test consists in asking a per-

Jasnopis – A Program to Compute Readability of Texts 53

son to complete gaps in a version of the text in which every 5th word has been
deleted. The Cloze score is the percentage of gaps that have been completed cor-
rectly. It has been confirmed that the Cloze score correlates well with other psycho-
linguistic methods of assessing text readability (Rankin 1959; Bormuth 1966). Using
the Cloze test, quality of various readability formulas was computed by DuBay
(2006). For example the Pearson correlation between the Cloze score and the Flesh
formula (1) is 0.91, the same result was obtained for the Fog index (2) whereas the
best result, correlation 0.93, was observed for the formula by Dale and Chall (1948).

It is reasonable to expect that readability formulas should be language dependent
to a certain extent. The typical length of a sentence or a word clearly depends on a
language. For this reason, readability formulas, particularly those suggesting the re-
quired level of reader's education, should be tuned to a particular language, such as
Polish. Until recently, there was not much interest in the readability research for the
Polish language. This research area started to gain more interest in the last few years,
e.g., Broda et al. (2010), but the most known readability formula was proposed by
Pisarek in 1960’s (as reported in Pisarek, 2007):

Text Difficulty =

1
2√ASL2+PHW 2

,

(3)

where ASL – average sentence length (in words), PHW – percentage of words longer
than three syllables. In his 2007 paper, Pisarek also published a graphical scale for
computing readability, which corresponds to a bit different formula, namely

Text Difficulty =

ASL
3

+ PHW
3

+1
.

(4)

Pisarek has not verified his formulas in a psycholinguistic experiment on human
subjects. In contrast, we will discuss the results of a larger research project in which:

1. The Cloze test and an open-ended question test was applied to 35 texts in
Polish, read by a sample of 1759 persons.

2. The results of the psycholinguistic experiment were analyzed statistically to
provide a new readability formula, which is better than Pisarek's formula.

3. A computer application, called Jasnopis, was written to compute this read-
ability formula for a given text in Polish. Besides estimating readability ac-
cording to our new formula, Jasnopis returns many other text statistics for a
given text and prompts how to adjust the text to make it more readable.

The organization of the paper is as follows. In Section 2 we discuss the psycho-
linguistic experiment. Section 3 is devoted to statistical analysis of the data and the
development of a new readability formula. In Section 4 we describe the Jasnopis pro-
gram. Conclusions are presented in Section 5.

Ł. Dębowski, B. Broda, B. Nitoń, E. Charzyńska 54

2 The psycholinguistic experiment

The purpose of the psycholinguistic experiment was fourfold: a) to validate Pis-
arek's formula, b) to find text variables that influence text readability but are different
than ASL and PHW, c) to identify psychological variables that influence text com-
prehension (such as reader's interest in the text), and d) to use the results of the ex-
periment to develop a new readability formula.

Before conducting the psycholinguistic experiment, we have constructed an a pri-
ori scale of seven classes of growing text difficulty, measured in the number of re-
quired years of education to understand the text correctly. (Class 1 are texts that
should be understandable by students of elementary schools, whereas class 7 are
those whose comprehension requires the doctorate level of education.) Subsequently,
we have compiled a corpus of texts that presumably belong to the respective text dif-
ficulty classes. The texts were chosen by the project members: psycholinguists, lin-
guists and computational linguists. Using the FOG index (2), we have next chosen 5
most typical texts for each difficulty class. In this way we have obtained a sample of
35 texts, on which we performed the psycholinguistic experiment.

 In the experiment, 1759 persons have participated: 63% female and 37% male.
Participants were of diversified ages (average=35.6, standard deviation=14.65,
min=15, max=87), education (from elementary to higher), occupation (including
manual workers, white-collars, unemployed and pensioners), coming from villages
(20%), smaller towns (28.3%), medium-size cities (28.7%) and big cities (21.7%).
Each participant of the study received 2 texts to read. Each text was accompanied
with a set of 5 open-ended questions or the Cloze test. The experiment was performed
using the traditional pen and paper approach.

Having collected the survey results, we performed statistical analysis of the data.
We found out that Pisarek's formula was highly correlated with the results of the
Cloze test (r=-0.69, p=0.001) and the open-ended questions (r=0.8 p=0.001). More-
over, we found out that the test results are highly correlated not only with the vari-
ables used by Pisarek (for ASL rcloze=-0.63, rquestions=-0.71; for PHW rcloze=-0.67, rques-

tions=-0.83; p=0.001) but also with some other text statistics. Among the top correlated
variables were: the percentages of nouns, terminology, abstract nouns, foreign words,
gerunds, verbs, the ratio of nouns to verbs, and the subjective probability of words
(Imiołczyk, 1987). These results suggest that using these variables we may propose a
readability formula that outperforms the Pisarek or Fog indices.

3 A new readability formula

Given the psycholinguistic survey described in Section 2, we were in position to
analyze how readability of a text depends on particular text statistics. At our disposal
we had 35 texts – 5 texts per each of 7 difficulty classes. For each text, we had the
results of two psycholinguistic tests measuring the text comprehension – the Cloze
test and the open question test. These were our response variables. Moreover, for
each text, we have measured 33 lexical and syntactical text statistics, such as ASL,

Jasnopis – A Program to Compute Readability of Texts 55

PHW, the percentages of nouns, terminology, abstract nouns, foreign words,
gerunds, verbs, the ratio of nouns to verbs, and the subjective probability of words.
These were our explanatory variables. The goal of the consecutive data analysis was
to find out (i) how the difficulty class of a text could be predicted from the response
variables and (ii) how the response variables could be predicted from the explanatory
variables. As a result, we obtained a new formula for text readability which was im-
plemented in the Jasnopis tool, to be discussed in the next Section 4.

Since there were not so much data, we looked for a linear formula for readability:

Y i =A0+∑ A j Xij +εi .
(6)

where: Yi – a chosen response variable for the i-th text, Xij – j-th explanatory variable
for the i-th text, εi – random noise, i=1,...,N, N=35 – the number of texts, K=33 – the
number of explanatory variables.

The number of texts N=35 is close to the number of explanatory variables K=33.
In this situation, choosing the coefficients Aj through least squares regression would
lead to terrible overfitting, that is, formula (6) would not predict comprehension of
texts different to the training sample. A possible solution to this problem is to use
least squares regression with regularization, such as Lasso or Ridge regression (Tib-
shirani, 1996; Tikhonov, Arsenin, 1977). The least squares regression with regulari-
zation consists in choosing such coefficients Aj that minimize expression

∑ [Y i− A0+∑ A j Xij]2 +β∑ (A j)α ,
(7)

where α = 1 for the Lasso regression and α = 2 for the Ridge regression, whereas β is
chosen by cross validation. (For the least squares regression without regularization,
we minimize expression (7) with β = 0.)

A priori it was not obvious that the Lasso or Ridge regression would give the best
results. Therefore we compared these two methods with three other methods:

1. The baseline model: Text difficulty does not depend on text. That is, we
minimized expression (7) with β = 0 and Aj being nonzero only for j = 0.

2. The least squares regression with two explanatory variables, ASL and PHW,
as in Pisarek's formula (4). That is, we minimized expression (7) with β = 0
and Aj being nonzero only for j = 0,1,2.

3. The weighted average (committee) of least squares regressions with three
explanatory variables: ASL, PHW, and one of the remaining 31 variables.
That is, first, for each k in range {3,...,K}, we minimized expression (7) with
β = 0 and Aj being nonzero only for j = 0,1,2,k, and second, we took an av-
erage over k of so obtained Aj.

The quality of each of these five methods of determining coefficients Aj was as-
sessed by leave-one out cross validation. That is, we removed one text from the train-
ing sample, we fitted the coefficients Aj to the remaining texts, and we checked how
well the model predicted the response variable for the removed text. The prediction
error, defined as difference between the prediction and the response variable, was
recorded for each text. We made a boxplot graph of the prediction error and we chose
the method for which the prediction error is the smallest in general.

Ł. Dębowski, B. Broda, B. Nitoń, E. Charzyńska 56

We applied this procedure independently to three response variables: the Cloze
score, the open question score, and a weighted average of these two scores, which we
will refer to as the weighted readability score. The relative prediction errors for pre-
dicting the Cloze score and the open question score were similar whereas they were
substantially smaller for the weighted readability score. Therefore we suppose that
the weighted readability score is a better predictor of the actual text readability than
the Cloze score or the open question score considered individually. The boxplots of
the prediction error for the weighted readability score and the five different methods
of determining coefficients Aj are presented in Fig. 1.

Fig 1. Boxplots of prediction error of the weighted readability score for the five
methods of determining coefficients Aj described in Section 4

In Fig. 1 we can see that the Ridge regression yields the smallest maximal predic-

tion error. Therefore formula (6) with coefficients Aj given by the Ridge regression
for the weighted readability score was adopted as a part of a new formula for read-
ability of texts implemented in the Jasnopis tool. The second ingredient of the new
Jasnopis formula for readability is a projection of the Rigde regression onto the scale
of 7 difficulty classes, introduced in Section 2, so that the final readability score be
more human readable. As we can see in Fig. 2, the dependence between the weighted
readability score and the difficulty class is linear in a good approximation.

4 The Jasnopis program

The final aim of our project was to construct a computer application for measuring
readability of Polish texts. The tool, called Jasnopis, implements the measure of text
readability given by the Ridge regression, described in the previous section, and addi-

Jasnopis – A Program to Compute Readability of Texts 57

tionally computes a number of other text statistics, which may be of interest to
end-users. The prototype web-based application is available at http://jasnopis.pl. Jas-
nopis accepts many different documents types on its input: from a plain text and a
website URL address to document formats supported by OpenOffice. The first step of
the document processing by Jasnopis is text extraction, which is a nontrivial problem
on its own. Next, we perform morphological analysis using Morfeusz (Woliński,
2006, and part-of-speech tagging using WCRFT (Radziszewski, 2013). In the later
stages of document processing we use various tools and resources like the frequency
lists from National Corpus of Polish, NCP (Przepiórkowski et al., 2012), the plWord-
net (Piasecki et al., 2009) or the subjective probability lists of Imiołczyk (1987).

Fig. 2. The dependence between the weighted readability score (Y) and the difficulty
class (klasa) for 35 texts

The main statistic calculated by Jasnopis is the difficulty class on the 7-point scale,

described in Section 2. To estimate the difficulty class we rescale the score of the
Ridge regression via the linear function depicted in Fig. 2. Additionally, Jasnopis
calculates the following indices: a few variants of the FOG index (2), Pisarek's indi-
ces (3) and (4), an automated Taylor test, similarity graphs and additional text statis-
tics. Both the FOG and Pisarek indices depend on the variable PHW – the percentage
of words longer than a certain number of syllables (for Polish, three). Since Polish is
an inflective language, it is not a priori obvious whether when computing PHW one
has to consider the orthographic forms or the base forms of words.

In addition to the above variants of the FOG and Pisarek indices we also calculate
some discounted versions of them, because the original definition of “hard” words in
PHW is too simplistic: not every long word is a difficult word. Many words that are
long are so common, that an average person has no difficulty in understanding them.
Thus, we exclude most frequent words in NCP from PHW calculation. There are
many words that an average Polish native speaker knows, but which are rarely used

Ł. Dębowski, B. Broda, B. Nitoń, E. Charzyńska 58

in writing. Thus, from the PHW calculation, we also remove words that can be found
on the subjective probability lists by Imiołczyk (1987).

Another text statistic implemented in Jasnopis, the automated Taylor test is some-
what inspired by the Cloze test by Taylor (1953, 1956). Instead of using human sub-
jects, we train a few statistical language models and we check which one is the best at
predicting the text. For simplicity, we use bigram language models (Jurafsky & Mar-
tin, 2008), trained on 5 reference corpora corresponding to different classes of text
difficulty. Each bigram model assigns a probability of a word wi conditioned on a
single previous word wi-1 as

,

(5)

where c(wi-1wi) denotes the number of times the bigram wi-1wi occurred in a training
corpus. In this way we obtain seven bigram models corresponding to the seven
classes of text difficulty. Then, the difficulty class of a given new text is determined
as the class of difficulty corresponding to the bigram model with the highest total
probability (that is, the lowest perplexity).

Yet another automated score of text difficulty implemented in Jasnopis is also
based on reference corpora. Namely, instead of building language models we use the
Vector Space Model (Salton et al., 1975). In this approach the text is represented as
the n-dimensional vector D=[d1,d2,…,dn], where di are frequencies of words appearing
in the text. To compare two texts or corpora we use the cosine distance between the
corresponding vectors. Subsequently, the difficulty class of a given new text is de-
termined as the class of difficulty corresponding to the reference corpus with the
highest smallest cosine distance. Let us observe that this procedure ignores syntactic
difficulty of the text since we treat the text as a bag of words. Thus, we only compare
texts on a lexical level. Nonetheless, as we have determined, the lexicon is an impor-
tant factor in measuring readability of a given text.

We have experimentally verified performance of both the automated Taylor test
and the similarity model. Using leave-one-out cross validation we achieved from
68.31% to 100% (depending on the reference corpus difficulty class) precision for
automated Taylor test and from 71.74% to 100% for similarity-based approach. See
Broda et al. (2014) for details.

Besides returning a number of text statistics, Jasnopis supports also computer-
aided text simplification. In a given text, it marks difficult paragraphs, too long sen-
tences, and hard words. For hard words, substitution suggestions are presented some-
times using synonyms, hyponyms and hyperonyms from the plWordNet. No word-
sense disambiguation is implemented, so the user has to make the final decision.
Since simplifying a document in a web-based environment might not be very conven-
ient, we have developed also Jasnopis plugins for OpenOffice and MS Word that
cover most important functionalities of the web application.

Jasnopis – A Program to Compute Readability of Texts 59

5 Concluding remarks

In this paper we have presented an approach for constructing a new readability for-
mula for Polish, based on Ridge regression. We use 33 lexical and syntactic text vari-
ables for predicting the text difficulty class, which is an improvement over the re-
ceived readability formulas, which only use two variables. The regression coefficients
in the Ridge regression were fitted to the empirical text comprehension data – a psy-
cholinguistic experiment with 35 texts and 1759 subjects. We have also presented a
computer program for measuring text readability. The application, called Jasnopis,
not only implements the new formula but also provides other methods for measuring
readability, both new and standard. By showing difficult sentences and words in a
text, Jasnopis supports computer-aided text simplification, as well.

The proposed approach to measuring readability can be extended in several ways.
One might search for additional explanatory text features. Especially, sophisticated
syntactic features based on parse trees might provide additional benefits. Also, one
could use other machine learning approaches to come up with even smaller error
rates. Since Jasnopis already provides a few different methods for measuring read-
ability, a straightforward approach would be to combine them using for example bag-
ging. Last, but not least, having the ability to measure readability for Polish is a nec-
essary step for (semi) automatic text simplification, which is an obvious direction of
further research.

References

Bjornsson, C. H. (1968) Lasbarhet. Liber, Stockholm.

Bormuth, J. (1966) Readability: A new approach. Reading Research Quarterly, 1:79-132.

Broda, B., Maziarz, M., Piekot, T., Radziszewski, A. (2010) Trudność tekstów o
Funduszach Europejskich w świetle miar statystycznych. Rozprawy Komisji Językowej
Wrocławskiego Towarzystwa Naukowego, 37.

Broda, B., Ogrodniczuk, M., Nitoń, B., Gruszczynski, W. (2014) Measuring Readability
of Polish Texts: Baseline Experiments. In: Proc. of the 9th International Conference on
Language Resources and Evaluation, Reykjavik, Iceland.

Caylor, J. S., Stitch, T. G., Fox, L. C., Ford, J. P. (1973) Methodologies for determining
reading requirements of military occupational specialties. Technical Report 73-5, Human
Resources Research Organization, Alexander, Virginia.

Dale, E., Chall, J. S. (1948) A formula for predicting readability. Educational Research
Bulletin, 27:1-20, 37-54.

Dale, E., Tyler, R. (1934) A study of the factors influencing the difficulty of reading mate-
rials for adults of limited reading ability. Library Quarterly, 4;384-412.

DuBay, W. H. (2006) Smart Language: Readers, Readability, and the Grading of Text.
Impact Information, Costa Mesa.

Ł. Dębowski, B. Broda, B. Nitoń, E. Charzyńska 60

Flesch, R. (1948) A new readability yardstick. Journal of Applied Psychology, 32:221-
233.

Gray, W., Leary, B. (1935) What Makes a Book Readable. University of Chicago Press,
Chicago.

Gunning, R. (1952) The Technique of Clear Writing. McGraw-Hill, New York.

Imiołczyk, J. (1987), Prawdopodobieństwo subiektywne wyrazów: podstawowy słownik
frekwencyjny języka polskiego. Warszawa.

Jurafsky, D. and Martin J. H. (2008). Speech and Language Processing (2nd Edition).
Pearson Prentice Hall.

Kincaid, J. P., Fishburne, R. P., Rogers, R. L., Chissom, B. S. (1975) Derivation of new
readability formulas (Automated Readability Index, Fog Count, and Flesch Reading Ease
Formula) for Navy enlisted personnel. CNTECHTRA Research Branch Report, pp. 8-75.

Lewerenz, A. S. (1929) Measurement of the diffi-culty of reading materials. Los Angeles
Educational Research Bulletin, 8:11-16.

Lively, B. A., Pressey, S. L. (1923) A method for measuring the 'vocabulary burden' of
textbooks. Educational Administration and Supervision, 9:389-398.

Lorge, I. (1944a) Predicting readability. Teachers College Record, 45:543-552.

Lorge, I. (1944b) Word lists as background for communication, Teachers College Record,
45:543-552.

McLaughlin, G. H. (1969) SMOG grading—a new readability formula, Journal of Read-
ing, 22:639-646.

Patty, W. W., Painter, W. I. (1931) A technique for measuring the vocabulary burden of
textbooks , Journal of Educational Research, 24:127-134.

Piasecki, M., Szpakowicz, S., Broda. B. (2009) A wordnet from the ground up. Oficyna
wydawnicza Politechniki Wroclawskiej.

Pisarek, W. (2007) O mediach i języku. In: Jak mierzyć zrozumiałość tekstu?, pp.245-262.
Universitas, Kraków.

Przepiórkowski, A., Bańko, M., Górski, R. L., and Lewandowska-Tomaszczyk, B. (2012).
Narodowy Korpus Języka Polskiego. Wydawnictwo Naukowe PWN, Warsaw

Radziszewski, A (2013). A tiered CRF tagger for Polish. In: Intelligent Tools for Building
a Scientific Information Platform: Advanced Architectures and Solutions. Springer Verlag.

Rankin, E. F. (1959) The cloze procedure – Its validity and utility. In: Causey O., Eller W.
(eds.) Eighth Yearbook of the National Reading Conference, pp. 131–142.

Sherman L. (1893) Analytics of literature: A manual for the objective study of English
prose and poetry. Ginn and Co, Boston.

Taylor, W. L. (1953) Cloze procedure: a new tool for measuring readability. Journalism
Quarterly, 30:415–433.

Jasnopis – A Program to Compute Readability of Texts 61

Taylor, W. L. (1956) Recent developments in the use of ‘cloze procedure’. Journal-
ism Quarterly, 33:42–48.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society, series B, 58:267-288.

Tikhonov, A. N., Arsenin, V. Y. (1977) Solution of Ill-posed Problems. Winston & Sons,
Washington.

Salton, G., Wong, A. and C. S. Yang (1975) A vector space model for automatic indexing.
Communications of ACM, 18(11):613–620.

Senter, R. J., Smith, E. A., (1967) Automated Readability Index. Wright-Patterson Air
Force Base, p. iii. AMRL-TR-6620.

Washburne, C., Vogel, M. (1928) An objective method of determining grade placement of
children's reading material, Elementary School Journal, 28:373-381.

Woliński M., 2006. Morfeusz – a Practical Tool for the Morphological Analysis of Polish.
Intelligent Information Processing and Web Mining, Springer.

A Logical Form Parser for Correction and Consistency
Checking of LF resources

Rodolfo Delmonte, Agata Rotondi

Department of Linguistic Studies and Comparative Cultures and Department of Computer Science
Ca Foscari University - 30123 VENEZIA (Italy)

delmont@unive.it

Abstract. In this paper we present ongoing work for the correction of Extended
WordNet (XWN), the most extended freely downloadable resource of Logical
Forms (LFs) – by the Human Language Technology Research Institute
(HLTRI) of University of Texas at Dallas (UTD). In a previous paper we re-
ported on type and number of errors detected in the 140,000 entries of the re-
source, which amounted to some 30%. This didn’t include problems related to
inconsistencies from disconnected variables which were not computable at the
time. We now created an LF parser that parses each entry after appropriate
transformations. The parser has been created to count the number of discon-
nected variables, be they object variables or predicate event variables: the result
is 56% of LFs containing some disconnected variable. We devised two proce-
dures for correction: one lexical and the other structural which eventually al-
lowed a dramatic reduction: the final count is now 24%. Additional work has
been carried out to improve the general consistency by manual intervention on
"inconsistent" outputs signaled by the parser and has reduce the number of er-
rors to a reasonable percentage for such a resource, that is less that 15%.

1 Introduction

 This paper presents work carried out to parse and correct LF resources and in
particular XWN or Extended WordNet (see Mihalcea et al. 2001), a freely download-
able resource containing a mapping into Logical Forms (LFs) of WordNet glosses.
We started to produce a parser of LFs after working at individuating errors in XWN
(see XXX). After we discovered that some 30% of all entries needed some correc-
tions, we decided to continue work for a number of reasons, some of which positive
some others negative that will be discussed below.

 As to negative question, the first regards the way in which syntactic structure has
been produced. Current parsers mostly produce surface dependency/constituency
structure with good enough approximation, but which is of no use for the mapping
into LFs seeing that deep relations are missing. We are here referring to two types of
parsers, Charniak’s constituency-like parsers and dependency-like parsers. Deep
parsers are only a few and the accuracy of their performance is insufficient for a map-
ping into LFs seeing that LFs require fully consistent representations in order to pre-
serve the semantics (but see below).

R. Delmonte, A. Rotondi 64

 Now, there is a number of applications that produce LFs directly from syntactic
representations, but their performance is unsatisfactory for the reasons explained in
the previous paragraph. We tried LFToolkit (Rathod, Hobbs, 2005) which maps into
LF directly from the output of Charniak's parser - more on this below. Worthwhile
mentioning is also Cahill et al. (2007) attempt at transforming a portion of WSJ into
LFs by means of a conversion of PennTreebank II augmented syntactic representation
into complete F-structures. The authors claim an F-measure of 97% over the 96% of
sentences converted, which is certainly a success. However, WSJ sentences are in no
way comparable to glosses and their online parser does not allow the creation of LF1.
Since LFs cannot be produced fully automatically and need a lot of manual additional
work, we thought it reasonable to try and use existing LF resources such as ILF (In-
termediate Logical Forms) - see Agerri & Peñas, 2010, XWN and others. We believe
it is always worthwhile correcting these resources, wherever possible. WordNet
glosses are definitions, meaning paraphrases and declarative descriptions associated
to synsets of WN, which is what makes them highly valuable for semantically heavy
tasks such as Q/A, WSD, and Text Understanding in general.

 Coming now to the actual resources, LF mapping from PT (Penn Treebank)-like
constituency-based syntactic structures are - in our opinion - a lot more error prone
than those derived from dependency structure (see Agirre & Peñas, 2010). This is due
to the fact that PT-like structures are more difficult to map due to the nature of con-
stituency structure, which is more functionally based than semantically oriented,
when compared to dependency structures. Syntactic constituency in PT as well as the
one produced by Charniak’s parser, associates main constituency nodes to functional
heads like auxiliaries, complementizers, subordinating conjunctions, relative and
interrogative pronouns, modals, verb particles. Nominal heads are usually lumped
together with their determiners and modifiers, be they other nouns or adjectives. For
this reason, using a dependency structure in which semantic heads are separated from
functional ones can be and is – as ILF clearly shows, but see below – highly benefi-
cial for a safer mapping into LF. In this sense, ILF being mapped from dependency
structures is much closer to semantic content than XWN - more on ILF below.

 Both XWN and ILF have been mapped without the help of additional resources
such as lexica and anaphora resolution algorithm, which were in fact necessary, as
will be shown below. However, the net result is the absence of free ungrounded vari-
ables in ILF: on the contrary in XWN, the presence of ungrounded variables is the
rule, as will be shown below. This is partly due to the lack of any one to one corre-
spondence between constituency structure and LF as encoded in the mapping algo-
rithm.

 The paper is organized as follows: in section 2 we will review different types of
Logical Forms and try to evaluate the contribution of each representation; in section 3
we concentrate on XWN, WNE and ILF and individuate their strengths and weak-
nesses; section four is dedicated to presenting the parser itself; then we end with some
evaluation, conclusion and future work.

1 http://lfg-demo.computing.dcu.ie/lfgparser.html

A Logical Form Parser for Correction and Consistency Checking of LF resources

65

2 Logical Forms, but what kind?

In XWN, WNE and ILF the mapping to LFs has been done semi-automatically
with manual checking of the majority of syntactic constituency structures. However,
the actual mapping process has not been subsequently checked nor evaluated (but see
Vasile, 2004).

 What kind of LF are we referring to? The LF we are referring to is a flat un-
scoped first-order logic (FOL) well-formed formula representing the "meaning" of a
sentence. It has been restricted to a conjunction of predicates which in turn contain
arguments that have been hampered from being themselves recursive. Possible argu-
ments of predicates can be event variables and argument variables, the latter being
also called object variables, referring to entities, properties and attributes.

 However, not all work on Logical Form would look the same and there are lots
of different ways of computing and building them. In XWN, for instance, there is no
attempt at covering all if not most of what is commonly regarded as semantically
related problems that might as such be represented in a LF. Here below we show
some valuable attempt at including some of the semantics in the LF from the contents
of the book by (Bos & Delmonte, 2008) for the workshop of ACL Sigsem held in
Venice.

 The first LF we show is the one used by J.Bos to represent DRS. As can be seen
below, variables introduced in the representation are all of the same kind, the prefix
always being X. What changes is the number that follows the X. As a result there is
no distinct event variable, with an E prefix. The text is one of the Shared Task of the
workshop and we take these two sentences (ibid., 283):

Sent.1 Cervical cancer is caused by a virus.
Sent.2 That has been known for some time and it has led to a vaccine that seems to

prevent it.

|x0 x1 x2 |
| thing(x0)
| neuter(x1)
| neuter(x2)
|_____________

| x3 x4 x5 |
| cancer(x3)
| cervical(x3)
| cause(x4)
| virus(x5)
| event(x4)
| theme(x4,x3)
| by(x4,x5)
|_____________

|x6 x7 |
|know(x6)
|time(x7)
|event(x6)
|theme(x6,x0)
|for(x6,x7)
|_____________

_
|x8 x9 x10 x11

| |lead(x8)
|vaccine(x9)
|seem(x10)
|proposition(x11)

|event(x10)
|event(x8)
|agent(x8,x1)
|agent(x10,x9)
|theme(x10,x11)

| |to(x8,x9)
|_____________

_
|x11:x12
|prevent(x12)
|event(x12)
|agent(x12,x9)
|theme(x12,x2)

R. Delmonte, A. Rotondi 66

In this LF, events have been reified and appear as functions heading their variable.
Also semantic/thematic roles have been reified, and head the variables of both argu-
ment and event. This choice multiplies the number of logical objects, but simplifies
the matching. Another way of rendering the LF of sentence 1, could have been
cause(e4,x5,x3),cancer(x3),cervical(x3),by(e4,x5),virus(x5)
A slightly similar approach has been taken by (Clark et al., 2008) with a system

that also comprises a parser and a logical form generator2. Their example is shown
below, where variable are indicated by underscored _X:

Sent.3 "A soldier was killed in a gun battle."
(DECL ((VAR _X1 "a" "soldier")
(VAR _X2 "a" "battle" (NN "gun" "battle")))
(S (PAST) NIL "kill" _X1 (PP "in" _X2)))

This mixed syntactic structure is then used to generate "ground logical assertions

of the form r(x,y), containing Skolem instances, by recursively applying a set of syn-
tactic rewrite rules to it. Verbs are reified as individuals, Davidsonian-style."(ibid.,
48; but see also Davidson, 1967;1980):

object(kill01,soldier01)
in(kill01,battle01)
modifier(battle01,gun01)

As the authors comment, predicates used in this representation are just syntactic re-

lations of the type SUBJect_of, OBJect_of, and MODifier_of and all prepositions,
which typically take two variables related to the individuals they are bound to. In
particular, in this representation Skolem instances are associated with its correspond-
ing input word. Syntactic relations represent deep relations: the surface subject of the
passive sentence Sent.3 is turned into an OBJect.

Another richer way of representing meaning in LF is proposed by Delmonte in Bos
& Delmonte 2008:291, for the sentence,

Sent.4 John went into a restaurant
wff(situation,
 wff(go,
 < entity : sn4 : wff(isa, sn4, John) >,
 < indefinite : sn5 : wff(isa, sn5, restaurant) >,
 < event : f1 : wff(and, wff(isa, f1, ev),
 wff(time, f1, < definite : t2 :
 wff(and, wff(isa, t2, tloc), wff(pres, t2)) >)) >))
where we see that two semantic elements appear in the representation,

DEFINITENESS, and TENSE which is associated to a Reference Time location vari-

2 In the authors' words, the LF is "a semi-formal structure between a parse and full logic,
loosely based on Rathod & Hobbs, 2005. The LF is a simplified and normalized tree structure
with logic-type elements, generated by rules parallel to the grammar rules, that contains vari-
ables for noun phrases and additional expressions for other sentence constituents. Some disam-
biguation decisions are performed at this stage (e.g., structural, part of speech), while others are
deferred (e.g., word senses, semantic roles), and there is no explicit quantifier scoping. "

A Logical Form Parser for Correction and Consistency Checking of LF resources

67

able, T2. As will be discussed below, Reference Time and Definiteness are two im-
portant semantic features and are introduced also in other LF representations.

3 Previous Work related to XWN

There is a certain amount of additional work carried out on XWN that we want to
review briefly here below. Apart from XWN by UTD people, the other effort to trans-
late WN Glosses into Logical Form is by people at USC/ISI California, in 2006. Their
results are also available on the web and freely downloadable at ISI, 2007. As the
comment on the related webpage clearly states, "The following additional "standoff"
files providing further semantic information to supplement the WordNet 3.0 release."
The file contains LFs in XML format for most of the glosses "except where genera-
tion failed" as the comment clearly warns out. The authors made a subset of the core
WordNet including 2800 noun senses in plain text format, in 2007. As the comments
on the website say, "these are generally of higher quality than those contained in the
file below for all glosses." We find these representations in eventuality notation too
cluttered with additional event variables, which makes the LF entry too heavy to read,
as can be seen in the example of the entry BUTTER included below. These files can
be downloaded at http1;http2. The conversion process of WN glosses proceeds by
parsing with Charniak parser and the result is converted into a logical syntax by a
system called LFToolkit (Rathod & Hobbs, 2005). Each lexical semantic head is
transformed into logical fragments involving variables. For instance "John works" -
commented in detail below - is translated into John(x1) & work(e,x2) & present(e),
where e is a working event. Object variables are differentiated at first (x1 and x2), and
then a rule which recognizes “John” as the subject of “works” sets x1 and x2 equal to
each other. This works for the majority of English syntactic constructions. As the
authors themselves comment, whenever there was a failure by the LFToolkit, it hap-
pened as a result of a bad parse, due to the presence of constructions for which no rule
in LFToolkit had been written3.

 I will show here below the entry for BUTTER as it has been transformed by the
two systems. The first representation is the one produced at USC/ISI and the second
one is the one by XWN in (Moldovan & Rus, 2001). In fact both representations are
in XML format, but for easiness of reading we eliminate angled brackets:

3 "In these cases, the constituents are translated into logic, so that no information is lost; what is
lost is the equalities between variables that provides the connections between the constituents.
For instance, in the “John works” example, we would know that there was someone named
John and that somebody works, but we would not know that they were the same person. Alto-
gether 98.1% of the 5,000 core glosses were translated into correct axioms (59.4%) or axioms
that had all the propositional content but were disconnected in this way (38.7%). The remaining
1.9% of these glosses had bizarrely wrong parses due to noun-adjective ambiguities or to com-
plex conjunction ambiguities."(ibid.,49)

R. Delmonte, A. Rotondi

68

example (1)
entry word="butter#n#1" status="partial"gloss = an
edible emulsion of fat globules made by churning milk
or cream; for cooking and table use butter#n#1'(e0,x0)
-> edible'(e9,x1) + emulsion#n#1'(e1,x1) + of'
(e6,x1,x12) + fat#n#1'(e15,x17)+nn'(e14, x17,x12) +
globule#n#1'(e10,x12) + dset(s5,x12,e10+e14) + ma-
ke#v#15'(e2,x4,x3,x2) + by'(e3,x5,e7) + churn#v#1'
(e7,x10,x14) + milk/cream#n#2'(e11,x14) + for'(e4,x6,
x11) + cooking'(e12,x16) + table'(e13, x15)milk'
(e11, x14) -> milk/cream#n#2'(e,x14)cream#n#2'(e11,
x14) -> milk/cream#n#2'(e,x14)

example (2)
butter:NN(x1) --> edible_JJ(x1) emulsion:NN(x1)of:IN
(x1,x2) fat:JJ(x2) globule:NN(x2) make:VB(e1,x9,x1)
by:IN(e1,e2) churn:VB(e2,x2,x5) milk:NN(x3) or:CC
(x5,x3,x4) cream:NN(x4)

As can be seen in example(1), all lexical items are treated as predicates and have

an event variable starting with E, associated to them. Event variables are typically
unbound and should be quantified over. They are associated to object variables which
start with X. In some cases, when a DSET is asserted, event variables are connected
explicitly to their object variable, as in the nominal compound "FAT GLOBULES".
Also this LF representation, which is classified as PARTIAL, contains a lot of un-
bound or ungrounded variables, as for instance in the case of MAKE(e2,x4,x3,x2) in
example (1), where none of the object variables have an individual ground object
linked to them.

 Example(2) is much simpler and shorter. In this case, the LF representation pro-
duced has a better output. However, if we look at the representation associated to
MAKE, we notice that only has three variables, one of which is the event variable, e1,
and the remaining two are argument variables - x9, x1. Whereas x1 is properly bound
to the entry BUTTER, the second variable is unbound. We can also notice that the
first representation treats MAKE as a 3-place predicate, as in the sentence "John made
the butter smooth by...". On the contrary, the second representation only has two ar-
gument variables: this could be justified by the use of MAKE in a participial struc-
ture, with a different meaning though. The meaning in this case is obtained by omit-
ting the secondary predication. It is just a simple transitive structure in a passivized
form. More on this topic below.

 The problem related to these examples are typical problems of mapping from
surface syntactic structures to Logical Forms, and we have tried to overcome them by
building an LF parser that checks for consistency. Here the term consistency is re-
ferred solely to the existence of free unbound or ungrounded variables in a given LF
representation. This fact does not allow relations indicated by predicates to be associ-
ated to arguments and modifiers, which are thus disconnected. In this way, the for-
mula is useless and meaningless. Variables associated to predicates needs to be
equated with those of the arguments of the predicate in order to acquire semantic
consistency. From our analysis, 54.05% of all LFs contained in XWN suffer from that

A Logical Form Parser for Correction and Consistency Checking of LF resources

69

problem. In particular, they constitute 71,658 over 132,587 where we found the fol-
lowing data:

Table 1. Errors detected by the parser

categories Dis.Vars Tot.LFs %
Adverbs 487 3982 12.23

Adjectives 8886 20317 43.74
Verbs 9751 14454 67.46
Nouns 52672 94028 56.00
Total 71,658 132,587 54.05

Here percent values refer to errors found by the parser.

4 The LF Parser

The parser takes as input two files, one containing the list of logical forms as they
have been listed in XWN for the different categories - verb, noun, adjective, adverb;
and another file containing the synset offset followed by the synset. Each synset is
associated to a gloss that contains one or more definitions, comments or examples:
this is what has been transformed into Logical Forms in XWN. So the parser knows
that there may be one of more LFs to associated to the same synset offset index. Now,
each Logical Form will necessarily start with the same lemma which corresponds to
the first lemma in the synset: for instance, the entry 00002931 of the ADJ dataset
corresponding to the synset "abducent, abducting", has the associated gloss "espe-
cially of muscles; drawing away from the midline of the body or from and adjacent
part". This gloss is transformed into two LFs, respectively,

abducent:JJ(x1)-> draw_away:VB(e1,x1,x5) from:IN(e1,x2)
midline:NN(x2) of:IN(x2,x3) body:NN(x3) from:IN(e1,x4)
adjacent:JJ(x4) part:NN(x4)

abducent:JJ(x1) -> especially:RB(x1) of:IN(x1,x2)
muscle:NN(x2)

These have then been turned into the Prolog compliant corresponding structures

below:

lf(abducent_JJ(x1),[draw_away_VB(e1,x1,x5),from_IN(e1,x2),mid
line_NN(x2),
of_IN(x2,x3),body_NN(x3),from_IN(e1,x4),adjacent_JJ(x4),part_
NN(x4)]).

lf(abducent_JJ(x1),[especially_RB(x1),of_IN(x1,x2),muscle_NN
(x2)]).

The parser takes the synset offset associated to the current synset and the first LF

in the current list. Then it matches the first lemma in the synset with the lemma head-

R. Delmonte, A. Rotondi

70

ing the LF. After correcting the LF, the parser checks the rest of the list to see whether
there is another occurence of the current lemma and in that case it keeps the same
offset index, otherwise it passes the rest of the synset-offset list. As will be discussed
in detail in a section below, this version of the algorithm works fine only for a part of
WordNet, proper names behave differently and the algorithm had to be modified to
cope with them. The output of the algorithm is a conjunction of the information con-
tained in the two files, as follows:

synset(300002931,abducent_JJ(x1),[abducent,abducting])-
[draw_away_VB-[e1,x1], from_IN-[e1,x2],midline_NN(x2),of_IN
(x2,x3),body_NN(x3),from_IN-[e1,x4],adjacent_JJ(x4),
part_NN(x4)]

synset(300002931,abducent_JJ(x1),[abducent,abducting])-
[especially_RB(x1), of_IN(x1,x2),muscle_NN(x2)]

There are at least three different ways of conceiving the relation intervening be-

tween variables in a flat unscoped LF. As discussed above, the simplest way would be
that of considering all variables free and each one different from the others, and then
at the end, specifying those variables that have to be regarded equal by additional
equations. A second way, is to regard all variables equal, and then specifying the ones
that have to be regarded different - and this is what has been done in Robust Minimal
Recursive Semantics, (RMRS) (Copestake, 2009). In both these two ways, however,
variables need to be precisely bound as required, which is not what actually happens.
We report one of the examples from that presentation, for the sentence "Some big
angry dogs bark loudly", where we see that a scoped LF is used to convey the role of
quantifier "some":

example (3)

some_q(x4, big_a_1(e8,x4) ⋀ angry_a_1(e9, x4) ⋀ dog_n_1(x4),
bark_v_1(e2,x4) ⋀ loud_a_1(e10,e2))

Notice that in this LF representation, every attribute and modifier has a separate

event variable name. This is remarkably different from what has been done in XWN.
 The third way, which is more consistent with what has been done in the XWN

LF representation, is to consider variable equalities to indicate relations of some kind:
in particular, any modification relation is indicated by variable equality; the same
applies to argument relations. Another important topic regards the way in which op-
tional or omitted arguments should be treated in the LF representation. As discussed
in (Copestake, 2009) LFs for predicates should consider deep structure information
rather than simply surface structure, and in case an argument is missing - because it
has been omitted in a passive structure or simply because optional - this should be
signaled appropriately by marking the corresponding slot with U (for unexpressed).
These are some of the problems that we will try to tackle in our parser.

A Logical Form Parser for Correction and Consistency Checking of LF resources

71

4.1 The architecture of the LF parser

The LF parser is organized in a pipeline:
A. the first module tries to match variables in predicates with their object counter-

part.
B. the second module does the opposite: it tries to match variables in object formu-

las with their predicate counterparts.
This has to account for a number of different logical structures. The most common

one is the one accounting for predicate argument structures governed by verbs, as in,
- buy_VB(e1,x2,x1)
where e1 is a generic event variable which might or might not have higher level

binders, or meta level formula (see below) associated to it; x2 is by slot convention a
variable associated to the complement (in this case an object); and x1 is again by slot
convention the variable associated to the subject, treated as external argument. A
second structure is the one associated to prepositions and other similar two place
relation markers as comparative conjunctions or even subordinators and relative pro-
nouns:
- of_IN(x2,x3) - than_IN(x4,x5) etc.
where x(number) variables bind objects, and prepositions - when they introduce

gerundives - and (subordinating) conjunctions treated as relation markers:
- by_IN(e1,e2) - since_IN(e4,e5)
All relation markers only contain relational variables and no event or object vari-

able of their own.
Object formulae include simple one place predication with just one variable asso-

ciated to an entity, a property or an attribute, as in
- dog_NN(x2)
XWN uses the same specification also for modifiers like adjectives and adverbials:
- angry_JJ(x2), fast_RB(e2)
but this, on the basis of what we have commented above, needs some reorganiza-

tion. Modifiers are then supplemented by an additional variable of their own that
accounts for the role of predicate they fulfill. This will allow to differentiate cases in
which the same adjectival word - say "red" - may play the role of predicate in a copu-
lative construction which has to be differentiated from the role of attribute in a nomi-
nal compound, as in (4b) "The red hat was stiff" vs. (4a)"The stiff hat was red". The
two sentences could be differentiated as follows, where x1 is associated to the subject
of predication, "hat" and the predication itself is constituted by a different property
identified by variable e3. The attribute is associated to the nominal head object vari-
able x1 and is specified with event variable e2, assuming in this way that the property
of being “stiff” is independent of the property of being “red”, but they are both asso-
ciated to the entity X1:

example(4a)
be_VB(e1,x1), hat_NN(x1), stiff_JJ(e2,x1), red_JJ
(e3,e1)
example(4b)
be_VB(e1,x1), hat_NN(x1), red_JJ(e2,x1), stiff_JJ
(e3,e1)

R. Delmonte, A. Rotondi

72

There are then mixed formulae which include both event and object variables,
as in,

- by_means_of_IN(e1,x5) = (buying) by means of
- consider_VB(e3,e1,x2,x1), silly_JJ(e1,x2) = consider
(your dog) silly

where x2 is the variable associated to "dog" and e1 is included in the argument list

of the verb. This is what differentiated real copulative verbs like "be", and transitive
verbs like CONSIDER which have secondary predication as argument. As anticipated
above, there are also meta-level formulae and they are of two types:

- coordinating conjunctions
- complex nominal compound
The first refers to coordinating conjunctions, which allow to refer to sets of objects

or predicates. The latter are separately specified: here, rather than duplicating the
noun governors, the meta abstract coordinating conjunction is used, as shown below.
Coordination may interest both event and object variables, as follows:

- and_CC(x6,x1,x2,x3)
- decide_VB(e4,e5,x6), leave_VB(e5,x6)

for the sentence, "Frank, John, and the dog decided to leave".
A similar formula would be used in case event variable should be coordinated

as in,

- or_CC(e8,e1,e2,e3)

where e8 would be the variable associated to the coordinate structure.
The other meta level formula is associated to the function NN introduced in the

XWN following Jerry Hobb's suggestions. In this case, the only possible set of vari-
ables is the one associated to objects or nominals indicating properties of the head,
usually the last variable in the set. As in one below for "Samsung's profits" where x4
and x6 are bound to single entries,

- NN(x7,x4,x6)
- Samsung_NN(x4), profit_NN(x6)

and the variable x7 would be used by the event predicate that governs the nominal
compound,

- rise_VB(e2,x7)

In order to allow for smooth matching procedures, all meta-level formulae are
turned into their simple binary level by reification. Reification is also used for nega-
tion as shown below:

- coordinations are turned into one place predicates,

A Logical Form Parser for Correction and Consistency Checking of LF resources

73

- and_CC(x6,x1,x2,x3) --> and_CC(xc), coord(xc,x6),
coord(xc,x1), coord(xc,x2), coord(xc,x3)

- negations are reified:

- not_RB(e2) --> neg(xn,e2),not(xn)

In fact, all negation formulae had to be corrected before starting to check for their

consistency. We eliminated all DO auxiliaries and associated the negation predicate
directly to the main verb variable, using regular expressions. In this way we got a
double result: unwanted auxiliary information was eliminated and the negation opera-
tor is now correctly associated to the main verb meaning. A similar change had to be
introduced for all cases of wrong treatment of the amalgam CANNOT, which in
XWN is introduced directly without a decomposition, and in many cases is wrongly
tagged as noun. So we produced the following change again by regular expression,
where we deleted the variable associated to the wrong tagging and substitute it with
the right one.

4.2 Correcting Logical Forms

We envisage two types of corrections: one induced by lexical information and an-
other by structural information. The first correction is addressed to all those predicates
that contain a dummy variable for an argument which does not exist in reality. In fact,
here we are referring to verbs belonging to classes like unergative verbs, unaccusative
verbs, weather verb, impersonal verbs, but also to verbs which can be intransitivized,
ergativized. That is verbs which induce intransitive structures, either by raising the
object to subject position and eliminating the deep subject; or cases of verbs which
allow the object to be left unexpressed, that is something which can be quantified over
by an existential quantifier. Always on the basis of lexical information, we check for
intransitivized and passivized TRANSITIVE verbs, which constitute by far the major-
ity of cases. In particular, in case a passivized past participle is being used, this is
usually accompanied by the omission of the deep subject.

As to the structural corrections, we have been filtering wrong structures by a pro-
cedures that allows the correction module to select only those parts of the formula
which need to be modified. In order to extract information related to wrong and in-
consistent LFs, the parser collects variables related to object formula separately from
those related to predicate formula. Then it does a simple intersection. The set of inter-
secting variables is then used to verify whether there are ungrounded variables.

We used the two procedures in a sequence – at first we found ungrounded variables
and then looked for predicates with unneeded variables that coincided with the ones
found in the previous procedures – and eliminated them. The results are remarkable:
we managed to eliminate some 32%, that is almost half of previous 72% of all dis-
connected variables. In particular, they now constitute 31,583 over 132,587 – 23.82%.

R. Delmonte, A. Rotondi

74

Table 2. Errors after parser correction

categories Dis.Vars Tot.LFs % after % before
Adverbs 250 3982 6.28 12.23
Adjectives 1599 20317 7.87 43.74
Verbs 823 14454 5.69 67.46
Nouns 28911 94028 30.75 56.00
Total 31,583 132,587 23.82 54.05

As said above, XWN introduces a first event variable e1 or sometimes e0, which

should be quantified over and are left unbound. Also a first object related variable is
always associated to nouns and adjectives, and it is X1. These are not considered in
the intersection and are removed from the set. Here below some examples of inconsis-
tent formula for ABLE:

gloss: having the necessary means or skill or know-how or authority to do some-

thing

able:JJ(x1) -> have:VB(e1, x1, x8) necessary:JJ(x8)
means:NN(x2) skill:NN(x3) know-how:NN(x4) or:CC(x8, x2,
x3, x4, x5) authority:NN(x5) to:IN(x8, e2) do:VB(e2,
x8, x6) something:NN(x6)

where DO has x8 as Subject variable, which should be x1, that is the person that is
ABLE, SUBJect of the predication of HAVE and also head of the adjective modifier.
More errors are contained in the formula, where necessary(x8) should be neces-
sary(x2), seeing that it only modifies "means". The following case is an inconsistency
caused by various errors: "dependent_on" is associated to an unground variable "x4"
and not "x1"; the same applies to "relative" which is associated to "x2", rather than
"x1":

gloss: not dependent on or conditioned by or relative to anything else

independent:JJ(x1) -> not:RB(e2) dependent_on:JJ(x4)
condition:VB(e1, x5, x1) by:IN(e1, x5) or:CC(e2, e1)
relative:JJ(x2) to:IN(e2, x2) anything:NN(x2)
else:JJ(x2)

here below, we show what the correct LF would be like after introducing predicate
variables in each adjective modifier, changed ungrounded variable associated to
obligatory argument into an undefined U variable:

independent_JJ(x1) -> not_RB(e3),
dependent_on_JJ(e1,u,x1), or_CC(e3,e1,e2),
condition_VB(e2,x2,x1), by_IN(x2,u), or_CC(e4,e3,e5),
relative_to_JJ(e5,x3,x1), anything_NN(x3), else_JJ(x3)

A Logical Form Parser for Correction and Consistency Checking of LF resources

75

where DEPENDENT_ON has become a complex phrasal predicat. In its formula,
the preposition ON requires an additional variable, ungrounded, though; and
RELATIVE has also become a phrasal adjective with preposition and as such in need
of an additional argument variable. To this end, we turned both adjectives into two
place predicates with an event variable to indicate that there is a dummy BE verb
implicit in the gloss.

As said above, the parser at first measures intersection: in case no intersection in-
tervenes then a flag is written on the output file and used by the correction module. In
the following case, for instance, after deleting x1 and e1, the intersection is empty.

INPUT
lf(approved_JJ(x1),[generally_RB(e1),especially_RB(e1),
officially_RB(e1),judge_VB(e1,x5,x1),acceptable_JJ(x3),
satisfactory_JJ(x3)]).
OUTPUT
approved_JJ(x1) 6 [x5,x3] no intersection
lf(approved_JJ(x1),[generally_RB(e2,e1),especially_RB
(e3,e1),officially_RB(e4,e1),judge_VB(e1,e5,u,x1),
acceptable_JJ(e6,e5),satisfactory_JJ(e7,e5)]).

where we see that APPROVED has an LF formula made of 6 elements, that the in-

tersection of the relevant variables is empty, and that there are two variables in par-
ticular which have no correspondence in object formula. The parser will inspect the
formulas one by one, and eventually will equate x5 with x3, thus making the whole
LF consistent. The equation decision is determined by the fact that: x5 is contained in
a predicate formula, which also contains x1, and that x3 are both contained in object
formula. In addition they both FOLLOW the predicate, this being a clear indication -
in English at least - that they constitute a COMPLEMENT to the predicate itself. The
modified and corrected formula contains also additional event variables for attributes
predicated to x3 and an U for unexpressed argument variables.

In particular, the system found 110 cases of inconsistencies in the ADVERBS file
of XWN, 1154 cases of inconsistencies in the ADJECTIVES file, 2054 in the VERBS
file and 5276 in the NOUNS file. Overall, 8594 cases that we addressed by the correc-
tion module. The parser managed to correct half of them in a first run. Then more
rules have been devised to correct the rest of the errors. These rules have then been
used to check and correct most of the remaining LFs.

In fact, as a whole, we managed to correct many more entries, thanks to the fact
that the parser simply got stucked whenever the LF entry was not computable, i.e.
none of the variables matched either x1 or e1. We also corrected all negation opera-
tors and some of the conjunctions which were not tagged consistently, as for instance
THEN, which was tagged as RB (adverbial) most of the time, and only sometimes as
IN.

The evaluation of the corrections produced manually and automatically is made di-
rectly by the parser itself. The output of the parser, in the correction mode, is a file
containing all LFs which have some inconsistency. Corrections have been carried out
specifically on the output of the parser. Evaluation in this case is computed accord-
ingly on the basis of number of mistakes found by the same parser.

R. Delmonte, A. Rotondi

76

4.3 The case of Proper Names in WN

The parser works smoothly with three files, the ones containing Adverbs, Adjectives,
and Verbs, but when the file containing Nouns is started problems arise which eventu-
ally obliged us to modify the algorithm. WordNet contains some 24K capital letter ini-
tial lemmata which can be computed as proper names or named entities, i.e. person
names, organization names, famous events names, institution names, location names,
etc.(see Miller & Hristea, 2006). Contrary to expectations, the description of these en-
tries in the database resembles the one used for common nouns, which as we know are
used to denote classes of individuals, whereas proper names would rather be used to
individuate uniquely a single referent in the world - they are rigid designators according
to Kripke4. In fact, this is only partially true, seeing that a proper name made by the
compound of first name and surname today can be regarded ambiguous and can refer to
different referents in the world. The problem was partially amended by Miller &
Hristea, where they produced a new version of WordNet, 2.1 in which instances –
proper names – where differentiated from classes – common nouns – by the presence of
a suffix in the definition of hypernyms, added to @, like this @i (ibid. 3).

Now, let's consider synsets: synsets are a collection or set of synonym lemmata
which may constitute a single concept in a specific language. Lexica of different lan-
guages may vary a lot on this and a synset made of a plurality of referent words for
the same concepts, translated in another language may turn up to be uniquely denoted
by one single lemma. The other dimension of synsets is that they can be used to regis-
ter the presence of homographs denoting different concepts, i.e. their polysemous
nature. In this case, the same lemma - in case the synset is a singleton - or the first
lemma of the set – if the synset has more than one member, is used. This is marked in
WN by a different synset offset index as for instance in the typical case of PLANT,
which is associated to the following four synsets:

00014510 plant, flora, plant_life
03806817 plant, works, industrial_plant
05562308 plant
09760967 plant

The same word – a polysemous homograph – appears either as singleton or as first

member of a synset to denote different concepts. From a lexicographic point of view
these four entries, which instantiate totally different senses and are associated with
different glosses, are located in different places or lexical fields. As can be seen, the
offset indices are very far from one another, thus indicating the distance in meaning
involved in each of the different lemma forms. This is what we find with common
nouns: it would be impossible to have a duplicate of the same lemma in adjacency
within the same semantic lexical field indicating an instance or a slightly different
meaning. Polysemous words in WordNet are not many, and their presence in first
position in the synset is also an indication of the high frequency of usage of the word
in the language.

4 In his lecture in 1970, and then published in the book Naming and Necessity, by Saul A.
Kripke, 1980, Blackwell, Harvard University Press.

A Logical Form Parser for Correction and Consistency Checking of LF resources

77

 The problem is that WordNet uses a similar technique to store information about
"polysemous" proper names. In fact, this may sound quite strange, seeing that the
only meaning associated to a proper name is the referent which they should designate.
So what WordNet is actually highlighting by associating a synset to proper names is,
perhaps, the possibility that two or more proper names share part of the name. This is
usually the last name for person names and the name as identifier of different types of
named entities, like a famous work of art, or a famous book, etc. In some cases, how-
ever, it can also be the first name. As an example, here is the list of different entries
associated to JOHN, first lemma:

06043175 John, Gospel_According_to_John
10364758 John, Saint_John, St_John,

Saint_John_the_Apostle, St_John_the_Apostle,
John_the_Evangelist, John_the_Divine

10365110 John, King_John, John_Lackland

We have a first mention of JOHN as first member of a synset at 06043175, but

then the two following mentions appear one adjacent to the other - thus belonging to
the same semantic field (but is this a field at all?). On the other side, we know that
when a person name is involved, then the title or the surname is usually needed to
address the right person.

This might also not be sufficient, but it is obvious that first (and last) names can be
totally ambiguous, without having to be regarded polysemous. Besides, we know that
the concept is denoted by the full content of the synset, besides the gloss. And as the
content makes it clear, we are here dealing with three totally different referents: one is
the Gospel, the other is the Apostle and the third a King. So why use JOHN as first
lemma and not the more distinctive second (or third if available) lemma? We find this
to be totally misleading from a semantic point of view, because here we are not deal-
ing with polysemous words as was the case with PLANT, but rather with different
referential identity. Besides, the word JOHN by itself can have additional uses. Con-
sider for instance the corresponding lower case word "john" which is used with two
ambiguous meanings:

10076833 whoremaster, whoremonger, john
04274300 toilet, lavatory, lav, can, john, privy, bathroom

Here "john" is not the first member of the synset but the difference in meaning is tes-

tified again by the distance in terms of offset index values. In these two cases, the choice
of lexicographers was not to highlight the polysemy of "john" which appears included in
the set but not in first place, and will be assigned the corresponding offset index.

 There are only sparse cases of first names as first lemmata in adjacent synsets be-
fore reaching the lexicographically marked section of the Noun file where all proper
names are collected. Then, the choice to use first/last names as first members of the
synset becomes very common in the more restricted list of person names made up of
some 3200 entries that start around offset index 110102000. Here are some examples:

110102151 Aaron
110102325 Aaron, Henry_Louis_Aaron, Hank_Aaron
110103348 Adam, Robert_Adam

R. Delmonte, A. Rotondi

78

110103502 Adams, John_Adams, President_Adams, Presi-
dent_John_Adams

110103654 Adams, John_Quincy_Adams, President_Adams,
President_John_Quincy_Adams

110103839 Adams, Sam_Adams, Samuel_Adams
110105319 Agrippina, Agrippina_the_Elder
110105487 Agrippina, Agrippina_the_Younger
110109993 Allen, Ethan_Allen
110110169 Allen, Woody_Allen, Allen_Stewart_Konigsberg
110110327 Allen,Gracie_Allen,

Grace_Ethel_Cecile_Rosalie_Allen, Gracie
110112423 Anderson, Carl_Anderson, Carl_David_Anderson
110112636 Anderson, Marian_Anderson
110112784 Anderson, Maxwell_Anderson
110112893 Anderson,Philip_Anderson,

Philip_Warren_Anderson,Phil_Anderson
110113110 Anderson, Sherwood_Anderson

and the list may continue. In order to cope with this uncouth and unmotivated

choice, the algorithm had to be modified: now there would be uncertainty in both
files. In the list of LFs, where more than one LF would be associated to each sense
and would start with the same word. And in the gloss offset index + synset, where the
same first lemma appearing in more than one synset, now has been used to denote a
different concept in adjacency. There was no way to use the same automatic approach
we used previously. So in order to complete work on the NOUN data file, we have
decided to disambiguate each and every synset that needed it: i.e. all those synsets
that were associated with more than one LF. After manual modifications, here below
is the output and the input for the sequence of adjacent "Anderson":

synset(110112423,anderson_NN(x1),['Anderson','Carl_Anderson','Carl_
David_Anderson'])-[united_NN(x1,e6),state_NN(x2,e5),physicist_NN
(x3,e5),discover_VB-[e1,x1,x4],antimatter_NN(x4),in_IN(x4,x5),form_NN
(x5),of_IN(x5,x6),antielectron_NN(x6), call_VB-[e3,x6,e3],positron_NN
(x7,e3)]

synset(110112636,marian_anderson_NN(x1),['Marian_Anderson',
'Anderson'])-[united_NN(x1,e2),state_NN(x2,e2),contralto_NN(x3,e2),
note_VB-[e1,x1],for_IN-[e1,x4],performance_NN(x4),of_IN(x4,x5),
spiritual_NN(x5)]

synset(110112784,anderson_NN(x1),['Anderson','Maxwell_Anderson'])-
[united_NN(x1,e1),state_NN(x2,e1),dramatist_NN(x3,e1)]

synset(110112893,philip_anderson_NN(x1),['Philip_Anderson', 'Ander-
son','Philip_Warren_Anderson','Phil_Anderson'])-[united_NN(x1,e2),
state_NN(x2,e2),physicist_NN(x3,e2),study_VB-[e1,x1,x4],electronic_JJ
(x4),structure_NN(x4),of_IN(x4,x5),magnetic_JJ(x5),disordered_JJ(x5),
system_NN(x5)]

synset(110113110,anderson_NN(x1),['Anderson','Sherwood_Anderson'])-
[united_NN(x1,e2),state_NN(x2,e2),author_NN(x3,e2),works_NN(x4,e2),
be_VB-[e1,x5,x4],frequently_RB(x5,e2),autobiographical_JJ(x5,e2)]

A Logical Form Parser for Correction and Consistency Checking of LF resources

79

which was done after transforming the LFs as follows,

lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),physicist_NN(x3),
discover_VB(e1,x1,x4),antimatter_NN(x4),in_IN(x4,x5),form_NN(x5),
of_IN(x5,x6),antielectron_NN(x6),be_VB(e2,x6,e3),call_VB(e3,x8,x6),
positron_NN(x7)]).
lf(marian_anderson_NN(x1),[united_NN(x1),state_NN(x2),contralto_NN
(x3),note_VB(e1,x6,x1),for_IN(e1,x4),performance_NN(x4),of_IN(x4,x5),
spiritual_NN(x5)]).
lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),dramatist_NN(x3)]).
lf(philip_anderson_NN(x1),[united_NN(x1),state_NN(x2),physicist_NN
(x3),study_VB(e1,x1,x4),electronic_JJ(x4),structure_NN(x4),of_IN(x4,
x5),magnetic_JJ(x5),disordered_JJ(x5),system_NN(x5)]).
lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),author_NN(x3),works_NN
(x4),be_VB(e1,x4,x26),frequently_RB(x5),autobiographical_JJ(x5)]).

and the offset indices+synsets accordingly,

110112423 Anderson, Carl_Anderson, Carl_David_Anderson
110112636 Marian_Anderson, Anderson
110112784 Anderson, Maxwell_Anderson
110112893 Philip_Anderson, Anderson,

Philip_Warren_Anderson, Phil_Anderson
110113110 Anderson, Sherwood_Anderson

5 Conclusion and Future Work

In this paper we presented ongoing work to produce a parser for Logical Forms re-
sources that checks for their consistency, which is basically focussing on the existence
of disconnected and ungrounded variables, and tries to correct them. This problem is
divided up into two separate processes: one that looks for object variables and tries to
connect them to the predicate they depend on. Another process looks for arity of ar-
guments in any predicate formula in order to eliminate unwanted and unneeded vari-
ables: these may ensue basically due to the use of a basic lexical structure in presence,
however, of omitted arguments. Arguments may be omitted either because they are
optional, or because the predicate is used in a passive, intransitivized or ergativized
construction. We found an amount of disconnected variables that averages 56% of all
LFs, that is 71000 wrong entries over 138000 overall. After running the algorithm for
correction which used a lexicon of 7000 verb entries, we managed to correct over
32% of LFs thus reducing the error rate to 24%. We worked then at manually correct-
ing those LFs that are marked as inconsistent by the parser, overall some 4000 entries.
We corrected in this way 5.64% of errors that were signaled by the parser. Intervening
in this way we discovered new mistakes that are due simply to specific type of struc-
tures, containing adjunct structures at verb level. This will require a new effort to
count these new mistakes and then manually check the remaining entries. We are also
enriching semantically the logical forms, by two types of operations: signaling modi-
fiers' semantic nature as being either restrictive or non-restrictive, then intersective,
non-intersective and anti-intersective. But also treating three-place predicates distin-
guishing closed arguments from predicative arguments.

R. Delmonte, A. Rotondi

80

References

Agerri, R. and Anselmo Peñas (2010) On the Automatic Generation of Intermediate Logic
Form for WordNet glosses, 11th International Conference on Intelligent Text Processing
and Computational Linguistics (Cicling-2010), LNCS Vol. 6008, Springer.

Alshawi, H., Pi-Chuan Chang, M. Ringgaard. (2011) Deterministic Statistical Mapping of
Sentences to Underspecified Semantics, in Johan Bos and Stephen Pulman (editors), Pro-
ceedings of the 9th International Conference on Computational Semantics, IWCS,15-24.

Bos Johan & Rodolfo Delmonte (eds.), (2008) Semantics in Text Processing (STEP),
Research in Computational Semantics, Vol.1, College Publications, London.

Branco, A. (2009) "LogicalFormBanks, the Next Generation of Semantically Annotated
Corpora: key issues in construction methodology", In Klopotek, et al., (eds.), Recent
Adavnces in Intelligent Information Systems, Warsaw, 3-11.

Bender, E.M. and D.Flickinger (2005) Rapid prototyping of scalable grammars: Towards
modularity in extensions to a language-independent core. in Proc. 2nd IJCNLP-05, Jeju
Island, Korea.

Bender, E.M., D.Flickinger, and S.Oepen (2002) The Grammar Matrix: An open-source
starter-kit for the rapid development of cross-linguistically consistent broad-coverage
precision grammars. In J.Carroll et al.(Eds.), Proc. Workshop Grammar Engineering and
Evaluation at COLING19, Taipei, Taiwan, 8-14.

Cahill Aoife, Mairead Mccarthy, Michael Burke, Josef Van Genabith, Andy Way (2007)
Deriving Quasi-Logical Forms From F-Structures For The Penn Treebank, in Studies in
Linguistics and Philosophy, Vol. 83,pp 33-53.

Clark, Peter, Fellbaum, Christiane, and Hobbs, Jerry (2008) Using and Extending Word-
Net to Support Question Answering. In: Proceedings of the Fourth Global WordNet Con-
ference, eds. A. Tanacs, D. Csendes, V. Vincze, C. Fellbaum and P. Vossen. University of
Szeged, Hungary, pp. 111-119.

Copestake, Ann, (2009) Invited Talk: Slacker Semantics: Why Superficiality, Dependency
and Avoidance of Commitment can be the Right Way to Go. In: Proceedings of the 12th
Conference of the European Chapter of the ACL (EACL 2009), Athens, Greece, pp. 1-9.

Davidson, D. (1967) The logical form of action sentences. In N. Rescher (Ed.), The Logic
of Decision and Action, Pittsburgh. University of Pittsburgh Press.

Davidson, D. (1980) Essays on actions and events. Oxford: Clarendon Press.

Harabagiu, S.M., Miller, G.A., Moldovan, D.I.: eXtended WordNet - A Morphologically
and Semantically Enhanced Resource (2003) http://xwn.hlt.utdallas.edu, pp. 1-8.

Hobbs, J. (2005) Toward a useful notion of causality for lexical semantics. Journal of
Semantics, 22:181–209.

Hobbs, J. (2008) Encoding commonsense knowledge. Technical report, USC/ISI.
http://www.isi.edu/∼hobbs/csk.html.

http1. http://wordnetcode.princeton.edu/standoff-files/wn30-lfs.zip.

A Logical Form Parser for Correction and Consistency Checking of LF resources

81

http2. http://wordnetcode.princeton.edu/standoff-files/cwn-noun-lfs.txt.

Information Science Institute, University of Southern California: Logical Forms for Word-
Net 3.0 glosses (2007) http://wordnetcode.princeton.edu/standoff-files/wn30-lfs.zip

Mihalcea, R., and Dan I. Moldovan, (2001) eXtended WordNet: progress report, In: Pro-
ceedings of NAACL Workshop on WordNet and Other Lexical Resources, Pittsburgh, 95-
100.

Miller, George A. & Florentina Hristea, 2006. WordNet Nouns: Classes and Instances, in
Computational Linguistics, Vol. 32, No 1, 1-3.

Miller, George A., (editor). 1990. WordNet: An on-line lexical database [Special Issue].
International Journal of Lexicography, 3:235–312.

Moldovan, D. and V. Rus (2001) Explaining answers with extended wordnet. In Proc.
ACL’01.

Rathod, Nishit & J. Hobbs (2005) Lftookit. In http://www. isi.edu/rathod /wne /LFToolkit/
index.html, 2005.

Rus, Vasile (2004) A first evaluation of logic form identification systems. In Senseval-3,
Association for Computational Linguistics, pp. 37–40.

Schubert, L. and C.Hwang (1993) Episodic logic: A situational logic for NLP. In Peter
Aczel, David Israel, Yasuhiro Katagiri, and Stanley Peters, (Eds.), Situation Theory and its
Applications, vol.3:303-337.

Predicting word ’predictability’ in cloze completion,
electroencephalographic and eye movement data

Chris Biemann1, Steffen Remus1 and Markus J. Hofmann2

1 Language Technology Group, Comp. Sci. Dept., TU Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany
{biem,remus}@cs.tu-darmstadt.de

2 General & Biological Psychology, Bergische Universität Wuppertal,
Max-Horkheimer Strasse 20, 42119 Wuppertal, Germany

mhofmann@uni-wuppertal.de

Abstract. Previous neurocognitive approaches to word predictability from sen-
tence context in electroencephalographic (EEG) and eye movement (EM) data
relied on cloze completion probability (CCP) data effortly collected from up to
100 human participants. Here we test whether two well-established techniques
in computational linguistics can predict these data. Together with baseline pre-
dictors of word position and frequency, we found that n-gram language models
but not topic models provide an approach to EEG and EM data that is not sig-
nificantly inferior to the CCP-based predictability data. This is the case for the
three corpora we used. Most strikingly, our models accounted for about half of
the variance of the CCP-based predictability estimates, thus suggesting that it
provides a computational framework to explain the predictability of a word
from sentence context. This can help to generalize neurocognitive models to all
possible novel word combinations.

1 Introduction

So far, manually collected cloze completion probabilities (CCPs) are typically
used for quantifying a word’s predictability from sentence context in neurocognitive
psychology (Kutas and Hillyard, 1984; Reichle et al., 2003). Here we tackle the ques-
tion whether the well-understood n-gram language models and Latent Dirichlet Allo-
cation (LDA) topic modeling (Blei et al., 2003) can account for CCPs, as well as
whether they can provide an equally well-fitting approach to electroencephalographic
(EEG) and eye movement (EM) measures, thus rendering time-consuming CCP pro-
cedures unnecessary.

 CCPs have been traditionally used to account for N400 responses as an EEG sig-
nature of a word’s contextual integration into sentence context (Dambacher et al.,
2006; Kutas and Hillyard, 1984). Moreover, they were included as the quantification
of the theoretical concept of predictability into models of eye movement control
(Engbert et al., 2005; Reichle et al., 2003). However, because CCPs are effortly col-
lected from samples of up to 100 participants (Kliegl et al., 2004), they provide a
severe challenge to the ability of a model to be generalized across all novel stimuli
(Hofmann and Jacobs, 2014), which also prevents their use in technical applications.

C. Biemann, S. Remus, M.J. Hofmann

84

To quantify how well computational models of word recognition can account for
human performance, Spieler and Balota (1997) proposed that a model should explain
variance at the item-level, for instance naming latencies, averaged across a number of
participants. Therefore, a predictor variable is fitted to the mean word naming latency
y as a function of for a number of n predictor
variables x that are scaled by a slope factor a, an intercept of b, and an error term. The
Pearson correlation coefficient r is calculated, and squared to determine the amount of
explained variance r2. Models with a larger number of n free parameters are more
likely to (over-)fit error variance, and thus less free parameters are preferred (e.g.,
Hofmann and Jacobs, 2014).
While the best cognitive process models can account for 40-50% of variance in be-
havioral naming data (Perry et al., 2010), neurocognitive data are noisier. The only
interactive activation model that gives an amount of explained variance in EEG data
(Barber and Kutas, 2007; McClelland and Rumelhart, 1981) was Hofmann et al.
(2008), who account for 12% of the N400 variance. Though models of eye movement
control use item-level CCPs as predictor variables (Engbert et al., 2005; Reichle et al.,
2003), they are rarely investigated in this field (Dambacher and Kliegl, 2007).

While using CCP-data increases the comparability of many studies, the creation of
such information is expensive and they only exist for a few languages (Kliegl et al.,
2004; Reichle et al., 2003). If it were possible to use (large) natural language corpora
and derive the information leveraged from such resources automatically, this would
considerably expedite the process of experimentation for under-resourced languages.
Comparability would not be compromised when using standard corpora, such as
available through Goldhahn et al. (2012) in many languages. However, it is not yet
clear what kind of corpus is most appropriate for this enterprise, and whether there are
differences in explaining human performance data.

2 Related Work

Taylor (1953) was the first to instruct participants to fill a cloze with an appropri-
ate word. The percentage of participants that fill in the respective word serves as cloze
completion probability. For instance, when exposed to the sentence fragment ”He
mailed the letter without a ￼___”, 99% of the participants complete the cloze by
”stamp”, thus CCP equals 0.99 (Bloom and Fischler, 1980). Kliegl et al. (2004) logit-
transformed CCPs to obtain pred = ln(CCP/(1−CCP)).

Event-related potentials are computed from human EEG data. For the case of the
N400, words are often presented word-by-word, and the EEG waves are averaged
across a number of participants relative to the event of word presentation. Because
brain-electric potentials are labeled by their polarity and latency, the term N400 refers
to a negative deflection around 400ms after the presentation of a target word.

After Kutas and Hillyard (1984) discovered the sensitivity of the N400 to cloze
completion probabilities, they suggested that it reflects the semantic relationship be-
tween a word and the context in which it occurs. However, there are several other
factors that determine the amplitude of the N400 (Kutas and Federmeier, 2011, for a

Predicting word ’predictability’ in cloze completion

85

review). For instance, Dambacher et al. (2006) found that word frequency (freq), the
position of a word in a sentence (pos), as well as predictability does affect the N400.

While the eyes remain relatively still during fixations, readers make fitful eye
movements called saccades (Radach et al., 2012). When successfully recognizing a
word in a stream of forward eye movements, no second saccade to or within the word
is required. The time the eyes remain on that word is called single-fixation duration
(SFD), which shows a strong correlation to word predictability from sentence context
(e.g., Engbert et al., 2005).

3 Methodology

3.1 Human Performance Measures

This study proposes that language models can be benchmarked by item-level per-
formance on three data sets that are openly available in online databases. Predictabil-
ity was taken from the Potsdam Sentence Corpus 1, first published by Kliegl et al.
(2004). The 144 sentences consist of 1138 tokens, available in Appendix A of Dam-
bacher (2009), and the logit-transformed CCP measures of word predictability were
retrieved from Ralf Engbert’s homepage1 (Engbert et al., 2005). For instance, in the
sentence “Manchmal sagen Opfer vor Gericht nicht die volle Wahrheit” [Before the
court, victims tell not always the truth.], the last word has a CCP of 1. N400 ampli-
tudes were taken from the 343 open-class words published in Dambacher and Kliegl
(2007). These are available from the Potsdam Mind Research Repository2. The EEG
data published there are based on a previous study (Dambacher et al., 2006, for meth-
od details). The voltage of ten centroparietal electrodes was averaged across 48 arti-
fact-free participants from 300 to 500ms after word presentation for quantifying the
N400. SFD are based on the same 343 words from Dambacher and Kliegl (2007),
available from the same source URL. Data were included when this word was only
fixated for one time, and these SFDs ranged from 50 to 750ms. The SFD was aver-
aged across up to 125 German native speakers (Dambacher and Kliegl, 2007).

3.2 N-gram Language and LDA Topic Models

Language models are based on a probabilistic model of language. The resulting
probabilities can be used to pick the most fluent of several alternatives e.g. in machine
translation or speech recognition. Word n-gram models are defined by a Markov
chain of order , where the probability of the following word only depends on
previous words. The probability distribution of the vocabulary, given a history
of words, is estimated based on n-gram counts from (large) natural language
corpora. There exist a range of n-gram language models (see for example Chapter 3

1 http://mbd.unipotsdam.de/EngbertLab/Software.html
2 http://read.psych.unipotsdam.de

C. Biemann, S. Remus, M.J. Hofmann

86

in Manning and Schütze, 1999). Here, we use a Kneser and Ney (1995) 5-gram mod-
el3. For each word in the sequence, the language model computes a probability p ∈]0;
1[. We use the logarithm log(p) of this probability as predictor. We used all words in
their full form, i.e. did not filter for specific word classes and did not perform lemma-
tization. N-gram language models are known to model local syntactic structure very
well. Since only n-gram models use the most recent history for predicting the next
token, they fail to account for long-range phenomena and semantic coherence, cf.
(Biemann et al., 2012).

Latent Dirichlet Allocation (LDA) topic models (Blei et al., 2003) are generative
probabilistic models representing documents as a mixture of a fixed number of N
topics, which are defined as unigram probability distributions over the vocabulary.
Through a sampling process like Gibbs sampling, topic distributions are inferred.
Words frequently co-occurring in the same documents receive a high probability in
the same topics. When sampling the topic distribution for a sequence of text, each
word is randomly assigned to a topic according to the document-topic distribution and
the topic-word distribution. We use Phan and Nguyen’s (2007) GibbsLDA implemen-
tation for training an LDA model with 200 topics (default values for α = 0.25 and β =
0.001) on a background corpus. Words occurring in too many documents (a.k.a.
stopwords) were removed from the LDA vocabulary. Then, we repeatedly sample the
topic assignments (cf. Riedl and Biemann, 2012) on the input sentence and retain the
most frequently assigned three topics per word. As predictor for the current open class
word in the sequence, we count the number of previous open class words in the se-
quence, which have at least one topic in common with the current word. Intuitively,
this measure should capture the amount of semantic coherence with the previous
words in the sequence. I.e. for a sequence like ”The dwarf was avoiding the ____”,
we’d expect a score of 1 for ”elves” for their topical similarity to ”dwarf” (provided
that there is sufficient support of dwarves and elves in the background corpus),
whereas we expect a score of 0 for ”rain”. Parameters of this procedure were deter-
mined in preliminary experiments. We hypothesized that topic models account for the
semantic aspects missing in n-gram models. While Bayesian topic models are proba-
bly the most widespread approach to semantics in psychology (e.g., Griffiths et al.,
2007), latent semantic analysis (LSA) is not applicable in our setting (Landauer and
Dumais, 1997): we use the capability of LDA to account for yet unseen documents,
whereas LSA assumes a fixed vocabulary and document space at model construction
time. In further experiments, we also used collocation statistics to predict semantically
expected items, but we obtained no correlation with human data.

4 Experiment Setup

Engbert et al. (2005)’s data are organized in 144 short German sentences with an
average length of 7.9 tokens, and provide features, such as freq as corpus frequency in
occurrences per million (Baayen et al., 1995), pos, and pred. We test whether two

3 https://code.google.com/p/berkeleylm/

Predicting word ’predictability’ in cloze completion

87

corpus-based predictors can account for predictability, and compare the capability of
both approaches in accounting for EEG and EM data. For training n-gram and topic
models, we used three different corpora differing in size and covering different as-
pects of language. Further, the units for computing topic models differ in size.

NEWS: A large corpus of German online newswire from 2009 as collected by
LCC (Goldhahn et al., 2012) of 3.4 million documents / 30 million sentences / 540
million tokens. This corpus is not balanced, i.e. important events in the news are cov-
ered better than other themes. The topic model was trained on the article level.

WIKI: A recent German Wikipedia dump of 114,000 articles / 7.7 million sen-
tences / 180 million tokens. This corpus is rather balanced, as concepts or entities are
described in a single article each, independent of their popularity, and spans all sorts
of topics. The topic model was trained on the article level.

SUB German subtitles from a recent dump of opensubtitles.org, containing 7420
movies / 7.3 million utterances / 54 million tokens. While this corpus is much smaller
than the others, it is closer to a colloquial use of language. Brysbaert et al. (2011)
showed that word frequency measures of subtitles provide numerically greater corre-
lations with word recognition speed than larger corpora of written language. The topic
model was trained on the movie level.

Pearson’s product-moment correlation coefficient was calculated (e.g. Coolican,
2010, p. 293), and squared for the N = 1138 predictability scores (Engbert et al.,
2005) or N = 343 N400 amplitudes or SFD (Dambacher and Kliegl, 2007). To address
overfitting, we randomly split the material in two halves, and test how much variance
can be reproducibly predicted on two subsets of 569 items. For N400 amplitude and
SFD, we used the full set, because one half was too small for reproducible predic-
tions.

5 Results

5.1 Predictability results

In the first series of results, we examine the correlation of manually obtained predict-
ability with corpus-based methods. High correlations would indicate that predictabil-
ity could be replaced by automatic methods. As a set of baseline predictors, we use
pos and freq, which explains 0.243 / 0.288 of the variance for the first respectively the
second half of the dataset. We report results in Table 1 for all single corpus-based
predictors alone and in combination with the baseline, all combinations of the base-
line with n-grams and topics from the same corpus.

predictors NEWS WIKI SUB
n-gram alone .262/.294 .226/.253 .268/.272
topic alone .024/.037 .029/.022 .014/.012
base+n-gram .462/.490 .462/.490 .448/.459
base+topic .252/.307 .254/.296 .244/.289
base+both .481/.516 .445/.473 .449/.461

C. Biemann, S. Remus, M.J. Hofmann

88

Table 1. r2 explained variance of predictability, given for two folds of the data set, for
various combinations of baseline and corpus-based predictors.

It is apparent that the n-gram predictor alone reaches r2 levels comparable to the

baseline, whereas the topic model alone explains hardly any variance. Combining the
baseline with the n-gram predictor achieves the best fitting to predictability for the
WIKI and SUB corpora. Combining the baseline with topics shows small improve-
ments for NEWS and WIKI (see Figure 1).

The best overall performance based on a single corpus is achieved with combining
the baseline with n-grams and topics from the NEWS corpus. This confirms a gener-
ally accepted hypothesis that larger training data trumps smaller, more focused train-
ing data, see e.g. (Banko and Brill, 2001) and others. We also fitted a model based on
all corpus-based predictors from all corpora, which achieved the overall highest r2=
0.532 / 0.547 . From these experiments it becomes clear that predictability can largely
be explained by a combination positional and frequency features combined with a
word n-gram language model. Different corpora capture slightly different aspects of
predictability, which is reflected by the improvements when combining predictors
from all three corpora. The topic model-based predictor only shows a negligible influ-
ence.

Fig. 1. Prediction models exemplified for the NEWS corpus in the x-axes and the N =
1138 predictability scores on the y-axes. A) shows the prediction by baseline + n-
gram (r2=0.475), and in B) a topic-predictor was added (r2=0.481). Fisher’s r-to-z test
revealed that there is no significant difference in explained variance (P=0.82)

5.2 N400 and SFD results

For modeling N400, we have even more combinations at our disposal since we can
combine the baseline with predictability as given in the dataset, with corpus-based
measures, and with both. We evaluate on all 343 data points for N400 amplitude fit-
ting. Without using corpus-based predictors, the baseline predicts a mere 0.032 of
variance, predictability alone explains 0.192 of variance, and their combination ex-
plains 0.193 – i.e. the baseline is almost entirely subsumed by predictability.

Fig. 2 lists the results for N400 amplitude modeling with corpus-based predictors.
Again, the n-gram model is the best corpus-based predictor, and fares best when

Predicting word ’predictability’ in cloze completion

89

trained on the NEWS corpus, confirming the result that corpus size is the major factor
for n-gram model quality. For the N400 experiments, the difference between the lar-
ger corpora (NEWS, WIKI) and the smaller corpus (SUB) is more pronounced.
Again, the topic predictor fails to show a major influence for explaining N400 ampli-
tude variance. The best combination without predictability, with a score of r2 = 0.182,
comes close to the performance of predictability alone.

predictors NEWS WIKI SUB
n-gram alone 0.141 0.140 0.126
topic alone 0.022 0.021 0.006*
n-gram+topic 0.170 0.166 0.131
base+n-gram 0.161 0.153 0.135
base+topic 0.051 0.050 0.036
bas+n-gram+topic 0.182 0.172 0.137
base+pred+n-gram 0.223 0.226 0.206
base+pred+topic 0.194 0.193 0.193
base+pred+both 0.228 0.229 0.206

Fig. 2. Left: r2 explained variance of N400 amplitude, for various combinations of
baseline, predictability and corpus-based predictors. * marks statistically independent
predictors of N400 (p > 0.05). Right: Two prediction models exemplified for the
NEWS corpus in the x-axes and the N = 343 N400 amplitudes on the y-axes. A)
shows the prediction by baseline + n-gram, and in B) predictability was added.
Fisher’s r-to-z test revealed that there is no significant difference in explained vari-
ance (P=0.25)

The experiments with predictability as an additional predictor confirm the results
from the previous section: n-grams + baseline and predictability capture slightly dif-
ferent aspects of human reading performance, thus their combination explains about
3% more variance than predictability alone. This difference, however, is not statisti-
cally reliable (see Figure 2). Differences between the two large corpora are negligible,
and so is the influence of the topic-based predictor.
Finally, we examine the corpus-based predictors for modeling the mean single fixa-
tions duration for 343 words. For this target, the pos+freq baseline explains r2 =
0.021, whereas predictability, alone or combined with the baseline, explains r2 =
0.184.

predictors NEWS WIKI SUB
n-gram alone 0.225 0.140 0.126
topic alone 0.006* 0.006* 0.006*
n-gram+topic 0.231 0.223 0.226
base+n-gram 0.239 0.226 0.226
base+topic 0.023 0.024 0.029
bas+n-gram+topic 0.242 0.230 0.229
base+pred+n-gram 0.273 0.274 0.258
base+pred+topic 0.188 0.184 0.184
base+pred+both 0.273 0.274 0.259

Fig. 3. Left: r2 explained variance of single-fixation duration, for various combina-
tions of baseline, predictability and corpus-based predictors. * marks statistically
independent predictors of SFD (P > 0.05). Right: Two prediction models exemplified

C. Biemann, S. Remus, M.J. Hofmann

90

for the NEWS corpus in the x-axes and the N = 343 SFD on the y-axes. A) shows the
prediction by baseline + n-gram, and in B) predictability was added. Fisher’s r-to-z
test revealed that there is no significant difference in explained variance (P=0.56)

The experiments confirm the utility of n-gram models in accounting for eye

movement data. Adding predictability did not lead to a significant increase of vari-
ance explained (see Fig. 3). In addition, the n-gram model alone explains more vari-
ance than predictability – however, the difference is not significant.

For SFD, corpus size does not seem to be a major influencing factor, as results are
comparable across corpora, however with the largest corpus (NEWS) still yielding the
best modeling results overall in absence of the predictability predictor. For SFD, topic
models seem entirely uncorrelated.

And again, the experiments confirm that n-gram models and predictability capture
similar, but slightly different aspects, since their combination yields another im-
provement, explaining r2 = 0.273 overall.

6 Conclusion

We have examined the utility of two corpus-based predictors to account for word
predictability from sentence context, as well as the EEG signals and EM-based read-
ing performance elicited by it. Our hypothesis was that word n-gram models and topic
models would account for the predictability of a token, given the preceding tokens in
the sentence, as perceived by humans. Our hypothesis was at least partially con-
firmed: n-gram models, sometimes in combination with a frequency-based and posi-
tional baseline, are highly correlated with human predictability scores and in fact
explain variance of human reading performance to an extent comparable to predict-
ability – slightly less on N400 but slightly more on SFD.

Topic models on the other hand, at least in the particular way we used them here,
failed to show a major influence on modeling human reading performance. This might
be related to the fact that the sentence scope in the data set is rather short so that most
“priming” effects can already be captured by our 5-gram model – topic models usu-
ally perform well on the level of documents, not single sentences.

Can we now safely replace human predictability scores with n-gram statistics?
Given the high correlation between predictability and the combination of n-grams
with frequency and positional information, and given that n-gram-based predictors
achieve similar levels of explained variance than predictability, the answer seems to
be positive. However, though our corpus-based approaches explain most of the vari-
ance that by manually collected CCP scores also account for, adding predictability
always accounts for more variance – though this difference is not significant (see
Figures 1-3). It is yet an open question, whether additional corpus-based predictors,
be it topic models or something else, could entirely explain the prediction power of
human CCP data for tasks like N400 amplitude and SFD modeling.

While n-gram models together with word frequency and position captured about
half of the predictability variance, and most of the N400 and SFD variance elicited by
it, we propose that it can be used to replace tediously collected CCPs. This not only

Predicting word ’predictability’ in cloze completion

91

saves a lot of pre-experimental work, but it also opens the possibility to apply (neuro-)
cognitive models in technical applications. For instance, n-gram models can be used
to generalize computational models of eye movement control to novel sentences
(Engbert et al., 2005; Reichle et al., 2003).

In the end, this will also improve our understanding of the cognitive processes un-
derlying EM and EEG measures. While both of these are not as well understood as
human CCP performance, predictability provided a great step towards understanding
the determinants of neurocognitive prediction processes. If we can compute the de-
terminants of N400 and SFDs from a corpus of sentences, however, we can computa-
tionally define these cognitive processes rather than using a better-understood per-
formance (CCP) to account for other human performance (N400, SFD).

Baayen (2010) proposed word frequency to be a collector variable often subsuming
other highly correlated variables. We found that adding n-grams to the baseline of pos
and freq doubled the explained variance in CCP-based predictability scores. This
suggests that the sentence level can unfold the cognitive processes previously ascribed
to word frequency. The doubling of explained variance suggests still unexploited
sources of human variance to be explained by neurocognitive simulation models,
which quantify the contextual constraints imposed by position-sensitive predictions of
a sentence’s words (e.g. Hofmann & Jacobs, 2014; Kutas & Federmeier, 2011).

Much as for computational models of word recognition, the amount of explained
item-level variance can serve as a benchmark for language models. Such a common
benchmark facilitates the comparison of differential computational models. Thus, for
instance, we would not only know that Frank et al. (2013)’s novel language model
can account for the N400, but the common benchmark of explained variance could be
easily compared to any novel approach – for instance by assessing whether one meas-
ure is significantly better than another one for the purpose of modeling.

Acknowledgments

The “Deutsche Forschungsgemeinschaft” (MJH; HO 5139/2-1), the German Insti-

tute for Educational Research in the Knowledge Discovery in Scientific Literature
(SR) program and the LOEWE center for Digital Humanities (CB) supported this
work.

References
H. R. Baayen, R. Piepenbrock, and L. Gulikers (1995) The CELEX Lexical Database. Re-
lease 2 (CD-ROM). LDC, University of Pennsylvania, Philadelphia.

H.R. Baayen (2010). Demythologizing the word frequency effect: A discriminative learn-
ing perspective. The Mental Lexicon, 5(3):436-461.

M. Banko and E. Brill (2001) Scaling to very very large corpora for natural language
disambiguation. Proc. ACL ’01, pp. 26–33, Toulouse, France.

H. A. Barber and M. Kutas (2007) Interplay between computational models and cognitive
electrophysiology in visual word recognition. Brain Res. Rev., 53(1):98–123.

C. Biemann, S. Remus, M.J. Hofmann

92

C. Biemann, S. Roos, K. Weihe (2012) Quantifying semantics using complex network
analysis. Proc. COLING 2012, pp. 263–278, Mumbai, India.

D. M. Blei, A. Y. Ng, M. I. Jordan (2003) Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3:993–1022.

P. A. Bloom and I. Fischler (1980) Completion norms for 329 sentence contexts. Memory
& cognition, 8(6):631–642.

M. Brysbaert, M. Buchmeier, M. Conrad, A. M. Jacobs, J. Bölte, and A. Böhl (2011) A
Review of Recent Developments and Implications for the Choice of Frequency Estimates
in German. Experimental psychology, 58:412–424.

H. Coolican (2010) Research Methods and Statistics in Psychology. Hodder & Stoughton.

M. Dambacher and R. Kliegl (2007) Synchronizing Timelines: Relations between fixation
durations and N400 amplitudes during sentence reading. Brain research, 1155:147–162.

M. Dambacher, R. Kliegl, M. J. Hofmann, A. M. Jacobs. (2006) Frequency and predict-
ability effects on event-related potentials during reading. Brain research, 1084(1):89–103.

M. Dambacher. 2009. Bottom-up and top-down processes in reading. Universitätsverlag
Potsdam, Potsdam.

R. Engbert, A. Nuthmann, E. M. Richter, R. Kliegl (2005) SWIFT: a dynamical model of
saccade generation during reading. Psychological review, 112(4):777–813.

S. L. Frank, G. Galli, and G. Vigliocco (2013) Word surprisal predicts N400 amplitude
during reading. Proc. ACL-2013, pp. 878–883, Sofia, Bulgaria.

D. Goldhahn, T. Eckart, U. Quasthoff (2012) Building large monolingual dictionaries at the
Leipzig Corpora Collection: From 100 to 200 languages. Proc. LREC 2012, Istanbul, Turkey.

T. L. Griffiths, M. Steyvers, and J. B. Tenenbaum (2007) Topics in Semantic Representa-
tion. Psychological review, 114(2):211–244.

M. J. Hofmann and A. M. Jacobs (2014) Interactive activation and competition models
and semantic context: From behavioral to brain data. Neuroscience and biobehav. rev.s,
46:85–104.

M. J. Hofmann, S. Tamm, M. M. Braun, M. Dambacher, A. Hahne, and A. M. Jacobs
(2008) Conflict monitoring engages the mediofrontal cortex during nonword processing.
Neuroreport, 19(1):25–9.

R. Kliegl, E. Grabner, M. Rolfs, and R. Engbert (2004) Length, frequency, and predict-
ability effects of words on eye movements in reading. Europ. Journal of Cog. Psy.,
16(12):262–284.

R. Kneser and H. Ney (1995) Improved backing-off for m-gram language modeling. Proc.
IEEE Int’l Conf. on Acoustics, Speech and Signal Processing, pp. 181–184, Detroit,
Michigan.

M. Kutas and K. D. Federmeier (2011) Thirty years and counting: finding meaning in the
N400 component of the event-related brain potential (ERP). Ann. Rev. of Psychology,
62:621–47.

Predicting word ’predictability’ in cloze completion

93

M. Kutas and S. A. Hillyard (1984) Brain potentials during reading reflect word expec-
tancy and semantic association. Nature, 307(5947):161–3.

T. K. Landauer and S. T. Dumais (1997) A solution to Plato’s problem: The latent seman-
tic analysis theory of acquisition, induction, and representation of knowledge. Psychologi-
cal Review, 104(2):211–240.

C. D. Manning and H. Schütze (1999) Foundations of Statistical Natural Language Proc-
essing. MIT Press, Cambridge, MA, USA.

J. L. McClelland and D. E. Rumelhart (1981) An Interactive Activation Model of Context
Effects in Letter Perception: Part 1. Psychological Review, 5:375–407.

C. Perry, J. C. Ziegler, and M. Zorzi (2010) Beyond single syllables: large-scale modeling
of reading aloud with the Connectionist Dual Process (CDP++) model. Cognitive Psychol-
ogy, 61(2):106–51.

X-H. Phan and C-T. Nguyen (2007) GibbsLDA++: A C/C++ implementation of latent
Dirichlet allocation (LDA). http://jgibblda.sourceforge.net/.

R. Radach, T. Günther, and L. Huestegge (2012) Blickbewegungen beim Lesen, Le-
seentwicklung und Legasthenie. Lernen und Lernstoerungen, 1(3):185–204.

E. D. Reichle, K. Rayner, and A. Pollatsek (2003) The E-Z reader model of eye-movement
control in reading: comparisons to other models. The Behavioral and brain sciences,
26(4):445–76; discussion 477–526.

M. Riedl and C. Biemann (2012) Sweeping through the topic space: Bad luck? roll again!
Proc. ROBUS-UNSUP 2012, Avignon, France.

D. H. Spieler and D. A. Balota (1997) Bringing Computational Models of Word Naming
Down to the Item Level. Psychological Science, 8(6):411–416

W. L. Taylor (1953) ”Cloze” procedure: A new tool for measuring readability. Journalism
Quarterly, 30:415.

Deterministic Choices in a Data-driven Parser

Sardar Jaf1, Allan Ramsay1

1The University of Manchester, Faculty of Engineering and Physical Sciences, School of
Computer Science, Manchester, United Kingdom
{sardar.jaf, allan.ramsay}@manchester.ac.uk

Abstract. Data-driven parsers rely on recommendations from parse models,
which are generated from a set of training data using a machine learning
classifier, to perform parse operations. However, in some cases a parse
model cannot recommend a parse action to a parser unless it learns from the
training data what parse action(s) to take in every possible situation. There-
fore, it will be hard for a parser to make an informed decision as to what
parse operation to perform when a parse model recommends no/several parse
actions to a parser. Here we examine the effect of various deterministic
choices on a data-driven parser when it is presented with no/several recom-
mendation from a parse model.

1 Introduction

One of the main components of a data-driven parser is a parse model, which rec-
ommends parse operations to a parser when processing sentences. It is not guaranteed
that a parse model can cover every possible situation during parsing and hence it may
be unable to recommend a parse operation or it may recommend several operations in
a given situation. Therefore, when a parse model recommends no/several operations
to a parser, it will be hard for the parser to determine what operation to perform. In
Section 3 we will describe a basic shift-reduce parser while in Section 4 we will de-
scribe our parser. In Section 6 we will identify several deterministic choices that a
data-driven shift-reduce parser may take. We will examine the effect of these deter-
ministic choices on the parsing performance in terms of efficiency and accuracy. In
Section 8.1, we will examine the effect of various deterministic choices when running
our parser deterministically, and in Section 8.2 we will examine the effect of the de-
terministic choices on our parse when running it non-deterministically.

2 Dataset

We have used the Penn Arabic Treebank (PATB) (Maamouri and Bies, 2004) part
1 version 3 for training and testing our dependency data-driven parser, which is a re-

S. Jaf, A. Ramsay 96

implementation of the arc-standard version of MaltParser (Nivre et al., 2010;
Kuhlmann and Nivre, 2010; Nivre et al., 2006). We have converted the phrase struc-
ture trees of the PATB to dependency structure trees using the standard conversion
algorithm for transforming phrase structure trees to dependency trees, as described by
Xia and Palmer (2001). In order to perform a 5-fold validation, we have systemati-
cally generated five sets of testing data and five sets of training data from the tree-
bank, where the testing data is not part of the training data. The training data contains
approximately 3853 sentences. The average length of sentences is 29 words and the
total number of testing sentences in each fold is about 970 sentences.

3 A Shift-reduce Parser

A basic shift-reduce parsing algorithm performs one out of three operations at any
parse transitions: SHIFT, LEFT-ARC or RIGHT-ARC. These operations are applied
to a queue of words which have not yet been looked at and a stack of words which
have been inspected but have not yet been assigned a syntactic role.

The SHIFT operation moves the head of the queue to the top of the stack. The
LEFT-ARC and RIGHT-ARC operations establish head-dependent relations (in de-
pendency parsing) between the head item of the queue and the top item on the stack.
The LEFT-ARC and the RIGHT-ARC operations are applied to one node in a queue
of input strings and one node on the stack. The LEFT-ARC operation makes the first
node in the queue the parent of the top node on the stack while the RIGHT-ARC op-
eration makes the top node on the stack the parent of the first node in the queue and
rolls back the item on the top of the stack to the queue.

Our parser implementation is similar to the arc-standard algorithm of MaltParser
(Kuhlmann and Nivre, 2010), which takes a deterministic approach to parsing natural
language text where a support vector machine (SVM) (Chang and Lin, 2001) classi-
fier is used for learning parse operations from a dependency treebank. The classifier
helps the parser to predict the most likely correct parse operation when it is presented
with a non-deterministic choice between multiple parse operations. As Nivre (2008)
states, in this kind of implementation the parser derives a single parse analysis by
incrementally selecting a parse operation, which makes the parsing process very sim-
ple and efficient. Moreover, by using an appropriate classifier, a good parsing accu-
racy is achievable (Nivre, 2008, p. 514).

The original arc-standard algorithm uses a deterministic approach to parsing
natural language texts. The parser follows suggestions made by a parse model to per-
form a specific parse action (SHIFT, LEFT-ARC, or RIGHT-ARC) at each parse
step. Performing the wrong parse action at a particular step during parsing will have a
knock on effect on subsequent parsing steps. Hence, the error propagation can be
substantial. Using a non-deterministic approach, where the parser is presented with
multiple actions to take, allows the parser to recover from a previous mistake if this is
subsequently identified.

Deterministic Choices in a Data-driven Parser 97

4 DNDParser

Our parser contrasts with MaltParser in the way it is non-deterministic but with
some deterministic features. We will call our parser DNDParser, which is short for
deterministic and non-deterministic dependency data-driven parser. At each parse
step, we generate a state for SHIFT, LEFT-ARC, and RIGHT-ARC, and we will as-
sign different scores to each state. The score of each state is computed by using two
different scores: (i) a score that is based on the recommendation made by the parse
model. For example, we give a score of 1 for a SHIFT operation if it is recommended
by the parse model, otherwise we give it a score of 0 (and the same applies to LEFT-
ARC and RIGHT-ARC). (ii) We add the score from (i) to the score of the current
state (which is the state that the new parse state is generated from). The sum of these
two scores is assigned to the newly generated parse state(s). We can rank a collection
of parse states by using their scores and then process the state with the highest score,
which we consider the most plausible state. The various states generated by our
parser is described in the following section.

5 Assigning Scores to Parse States

We extend the LEFT-ARC and RIGHT-ARC operations of the shift-reduce algo-
rithm to allow more variations of the reduce operations, such as LEFT-ARC(n) and
RIGHT-ARC(n) where n is any positive numbers. In this way, our parser generates
one or more parse states from a given state based on following situations:

• If the queue consists of one or more items and the stack is empty then
the parser produces one state by performing SHIFT. For example, if
the queue consists of items such as [1, 2, 3, 4] and an empty stack
such as [] then the parser cannot recommend LEFT-ARC(n) or
RIGHT-ARC(n) because these two operations require an item on the
stack to be made the parent or the daughter of the head of the queue
respectively

• If the queue consists of one or more items such as [2, 3, 4] and the
stack consists of one item only such as [1], then there are three possi-
ble moves: SHIFT, LEFT-ARC(1), and RIGHT-ARC(1). However,
the parse model, which is based on a classification algorithm, will
recommend only one operation (SHIFT, LEFT-ARC(1), or RIGHT-
ARC(1)). Hence, in this kind of state our parser generates three states
but only one state will be given a positive score, which is based on
recommendation of the parse model.

• If the queue consists of one or more items such as [3, 4] and the stack
consists of more than one item such as [2, 1], then our parser may
generate more than three states because it checks for relations be-
tween the head of the queue and any items on the stack; i.e., states

S. Jaf, A. Ramsay 98

that are generated by LEFT-ARC(n+1) and RIGHT-ARC(n+1). This
approach is a generalisation of proposals by Kuhlmann and Nivre
(2010) and Attardi (2006).

We store the states with various scores in an agenda sorted based on their scores,

and the state with the highest score is explored by the parser.

6 Classification-driven Deterministic Parsing

During some parse transitions, DNDParser may be forced to make deterministic
decisions. As explained in the previous section, if the parser is presented with a state
that has one or more items on the queue but an empty stack then it will produce one
state by performing SHIFT. For example, having a queue with [1, 2, 3, 4] and an
empty stack [] then the parser cannot recommend LEFT-ARC or RIGHT-ARC be-
cause both of these two operations requires an item from the stack to be made the
parent or the daughter of the head of the queue.

Having one or more items on the queue and one item on the stack the parser pro-
duces three states, namely: SHIFT, LEFT-ARC, and RIGHT-ARC. In this kind of
situation, the parsing model recommends only one operation where we give it a posi-
tive score so that the parser can then explore the recommended operation. However, it
is possible that the parse model may not recommend any operations if it is presented
with a situation that has never seen it during training. This is possible because the
classifier may not learn what action to take in every situation the parser encounters
during the testing phase. For example, in Fig. 1 we assume that the parse model did
not recommend any operation, where all three operations receive a score of 0, and
thus they will all have equal scores (which is the score inherited from the original
state).

States Operations Queue Stack Scor

e
Current state - [2, 3, 4] [1] 0
New states SHIFT [3, 4] [2, 1] 0
 RIGHT-ARC(1) [1, 3, 4] [] 0
 LEFT-ARC(1) [2, 3, 4] [] 0

Fig. 1. Generating three parse states from one state

In this kind of situation, it is not clear which operation the parser should explore

first, LEFT-ARC(1), RIGHT-ARC(1) or SHIFT. There are six different deterministic
strategies (order-of-preference) we can give to the parser as to which operation it
should explore first, those are:

1. SHIFT-LEFT-ARC-RIGHT-ARC

Deterministic Choices in a Data-driven Parser 99

2. SHIFT-RIGHT-ARC-LEFT-ARC
3. LEFT-ARC-SHIFT-RIGHT-ARC
4. LEFT-ARC-RIGHT-ARC-SHIFT
5. RIGHT-ARC-SHIFT-LEFT-ARC
6. RIGHT-ARC-LEFT-ARC-SHIFT

Furthermore, in situations where the parser is presented with a state that has one

or more items on the queue and more than one items on the stack, the parser can then
generate more than three states because it checks for relations between the head of the
queue and any items on the stack; i.e., states that are generated by LEFT-ARC(n+1)
and RIGHT-ARC(n+1). In this kind of situation, it is possible that two or more opera-
tions may be recommended by the parse model, where two or more states receive
positive scores. For example, in Fig. 2 where the parsing rules suggested LEFT-
ARC(1) (making 3 from the queue the parent of 2 on the stack) and also LEFT-
ARC(2) (making 3 the head of the queue the parent of 1 from the stack) they are both
given a score of 1.

States Operations Queue Stack Tree Scor

e
Current state - [3, 4] [2, 1] - 0
New states SHIFT [4] [3, 2, 1] - 0
 RIGHT-ARC(1) [2, 4] [1] (2>3) 0
 RIGHT-ARC(2) [1, 2, 4] [] (1>3) 0
 LEFT-ARC(1) [3, 4] [1] (3>2) 1
 LEFT-ARC(2) [2, 3, 4] [] (3>1) 1

Fig. 2. Generating more than three parse states from one state

In this kind of exemplified situation we may deterministically choose to perform

LEFT-ARC(1) instead of LEFT-ARC(2), by giving more priority to reduce opera-
tions that involve two items that are closer to each other. Alternatively, we may de-
terministically choose LEFT-ARC(2), by giving priority to reduce operations that
involve two items that are further away from each other. This leads to another two
different deterministic choices, which are:

1. furthest-item-first: this operation involves making relations between the

head of the queue and an item that is furthest away from it on the stack.
2. closest-item-first: this operation involves making relations between the

head of the queue and an item on the stack that is closest to it on the
stack.

We can run the parser deterministically by allowing it to accept the first terminal

state that it produces, which is a state where there are no possible actions for the par-
ser to take (i.e. if the queue is empty).

S. Jaf, A. Ramsay 100

7 Classification-driven Non-deterministic Parsing

Running our parser completely deterministic, then we allow it to accept the first
terminal state it produces (whether a well-formed tree is produced); i.e., when the
queue becomes empty because processing of all the words in it is performed by re-
moving queue items on to the stack. If we run the parser non-deterministically, we
allow it to explore the alternative states that remain on the agenda if the first terminal
state is not well-formed; i.e., where the stack has more than one item on it, which
means that some words did not receive a parent and hence a complete parse tree is not
produced. This means that the parser rolls back to the previous highest scored state on
the agenda and explores it until a state is generated whereby the stack contains one
item and a complete parse tree is generated.

8 Evaluation

In this section, we will present our evaluation of the deterministic and non-
deterministic versions of DNDParser. We show three different parsing accuracy
measures, those are: (i) Labelled Attachment Scores (LAS), which is the percentage
of the correct dependency relations with the correct labels of the dependency relations
(DEPREL) between tokens; (ii) Unlabelled Attachment Score (UAS), which is the
percentage of correct dependency relation (i.e., the percentage of tokens with correct
heads) regardless of the DEPREL; and (iii) Labelled Accuracy (LA) which is the per-
centage of tokens with the correct dependency label. The efficiency of the parser is
also presented, which is amount of time in seconds the parser consumes for establish-
ing a dependency relation between two words.

8.1 Deterministic Parser Evaluation with Various Deterministic Choices

In this section we will evaluate DNDParser by running it completely determinis-
tic. In deterministic mode, the parser accepts the first terminal state it produces re-
gardless of whether the state contains a complete parse tree for a given sentence.
Moreover, we present results for the various deterministic strategies, which we out-
lined in Section 6. We can observe from Table 1 that from the six deterministic order-
of-preferences, the LEFT-ARC-SHIFT-RIGHT-ARC strategy produces the highest
parsing accuracy.

We can also observe that the LEFT-ARC-SHIFT-RIGHT-ARC order-of-
preference produces higher parsing accuracy when combined with the furthest-item-
first reduction strategy than when it is combined with the closest-item-first reduction
strategy. However, combining the LEFT-ARC-SHIFT-RIGHT-ARC order-of-
preference with the furthest-item-first reduction strategy degrades the parsing effi-
ciency by about 7% compared with when it is combined with the closest-item-first
reduction strategy.

Deterministic Choices in a Data-driven Parser 101

Table 1. Deterministic parsing evaluation

Furthest-item-first reduction
Strategy UAS (%) LAS (%) LA (%) Efficiency
LEFT-ARC-SHIFT-RIGHT-ARC 72.48 70.63 93.6 0.062
SHIFT-LEFT-ARC-RIGHT-ARC 59.77 58.12 72.1 0.047
SHIFT-RIGHT-ARC-LEFT-ARC 59.41 57.76 71.7 0.067
RIGHT-ARC-LEFT-ARC-SHIFT 53.67 52.25 87.8 0.043
LEFT-ARC-RIGHT-ARC-SHIFT 53.67 52.25 87.8 0.042
RIGHT-ARC-SHIFT-LEFT-ARC 53.27 52.15 87.8 0.041

Closest-item-first reduction

Strategy USA (%) LAS (%) LA (%) Efficiency
LEFT-ARC-SHIFT-RIGHT-ARC 66.46 64.72 92.6 0.058
SHIFT-LEFT-ARC-RIGHT-ARC 59.76 58.05 73.4 0.035
SHIFT-RIGHT-ARC-LEFT-ARC 59.58 57.87 73.3 0.41
RIGHT-ARC-SHIFT-LEFT-ARC 52.62 51.18 87.7 0.037
RIGHT-ARC-LEFT-ARC-SHIFT 51.35 49.96 87.7 0.030
LEFT-ARC-RIGHT-ARC-SHIFT 51.15 49.26 87.5 0.032

8.2 Non-deterministic Parser Evaluation with Various Deterministic Choices

In this section we will evaluate our parser by running it non-deterministically. In
this mode, the parser explores other states until it finds a well-formed terminal state,
which is a state where the stack contains one item and a complete parse tree is gener-
ated. We run the parser in this mode by integrating various deterministic strategies
that we outlined in Section 6. We can note from Table 2 that from the six determinis-
tic order-of-preferences (see Section 6 for more detail), the SHIFT-LEFT-ARC-
RIGHT-ARC order-of-preference produces the highest parsing accuracy. We can also
observe that the SHIFT-LEFT-ARC-RIGHT-ARC order-of-preference produces
higher parsing accuracy when combined with the furthest-item-first reduction strategy
than when it is combined with the closest-item-first reduction strategy. However,
combining the SHIFT-LEFT-ARC-RIGHT-ARC strategy with any of the two strate-
gies (furthest-item-first reduction or closest-item-first reduction) the speed of the
parse is not largely affected (about 2.4%).

It appears that using different settings affects the performance of the parser
greatly. From the experiments conducted in this section, and the previous section, it is
apparent that running the parser non-deterministically with SHIFT-LEFT-ARC-
RIGHT-ARC order-of-preference and using the furthest-item-first reduction strategy
produces the best parsing performance.

S. Jaf, A. Ramsay 102

Table 2. Non-deterministic parsing evaluation with different deterministic choices

Furthest-item-first reduction
Strategy UAS (%) LAS (%) LA (%) Efficiency
SHIFT-LEFT-ARC-RIGHT-ARC 74.5 71.0 93.6 0.081
LEFT-ARC-SHIFT-RIGHT-ARC 72.6 70.7 92.0 0.072
SHIFT-RIGHT-ARC-LEFT-ARC 57.5 55.8 88.1 0.074
RIGHT-ARC-LEFT-ARC-SHIFT 53.6 52.2 87.9 0.060
LEFT-ARC-RIGHT-ARC-SHIFT 53.6 52.2 87.9 0.059
RIGHT-ARC-SHIFT-LEFT-ARC 53.6 52.2 87.9 0.060

Closest-item-first reduction

Strategy UAS (%) LAS (%) LA (%) Efficiency
SHIFT-LEFTA-RC-RIGHT-ARC 70.75 68.95 91.0 0.079
LEFT-ARC-SHIFT-RIGHT-ARC 66.48 64.74 90.7 0.058
SHIFT-RIGHT-ARC-LEFT-ARC 57.01 55.27 88.1 0.077
RIGHT-ARC-LEFT-ARC-SHIFT 52.55 51.11 87.8 0.056
LEFT-ARC-RIGHT-ARC-SHIFT 51.34 49.96 87.8 0.052
RIGHT-ARC-SHIFT-LEFT-ARC 51.34 49.96 87.8 0.051

9 Summary

Parse models are one of the main elements of data-driven parsers. They are used
for guiding parsers during the processing of natural languages. However, it is possi-
ble that parse models may recommend no/several parse operations to a parser in a
given situation. When parse models recommend no/several parse operations it is dif-
ficult for a parser to determine what operation to perform. Therefore, they are allowed
to make deterministic choices. In this paper, we have identified several deterministic
choices that a parser may take when it is presented with no/several parse operations,
which are recommended by a parse model. We have observed and examined the ef-
fect of each deterministic choice on the performance of a data-driven parser, which is
based on the shift-reduce algorithm. We have identified that each deterministic choice
affects the parsing performance in different ways. Some choices affect accuracy while
other choices affect efficiency.

Acknowledgment

Sardar Jaf's contribution to this work was supported by the Qatar National Re-
search Fund (grant NPRP 09-046-6-001). Allan Ramsay's contribution was partially
supported from the same grant.

Deterministic Choices in a Data-driven Parser 103

References

Chang, C.-c. and Lin, C.-J. (2001), Libsvm: A Library for Support Vector Machines. ACM
Trans. Intell. Syst. Technol. 3(2):1-27.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Written, I. H., (2009),
The weka data mining software: An update, SIGKDD Explorations. Newsl, 11(1):10-18.

Kuhlmann, M. and Nivre, J., (2010), Transition-Based Techniques for Non-Projective
Dependency Parsing, Northern European Journal of Language Technology, 2(1):1-19.

Nivre, J. (2008), Algorithms for deterministic incremental dependency parsing, Computa-
tional Linguistics, 34(4): 513-553.

Attardi, G. (2006) Experiments with a Multilanguage Non-projective Dependency Parser,
In Proceedings of the Tenth Conference on Computational Natural Language Learning,
CoNLL-X‘06, Association for Computational Linguistics, Stroudsburg, PA, USA. pp.
166–170.

Maamouri, M. and Bies, A. (2004) Developing an Arabic treebank: methods, guidelines,
procedures, and tools. In Proceedings of the Workshop on Computational Approaches to
Arabic Script-based Languages. Geneva, pp. 2–9.

Nivre, J., Hall, J. and Nilsson, J. (2006), MaltParser: A Data-Driven Parser-generator for
Dependency Parsing, In Proceedings of LREC.

Nivre, J., Rimell, L., McDonald, R. and Gomez-Rodriguez, C. (2010), Evaluation of de-
pendency parsers on unbounded dependencies. In Proceedings of the 23rd International
Conference on Computational Linguistics, COLING’10. Beijing, pp. 833–841.

Xia, F. and Palmer, M. (2001), Converting Dependency Structures to Phrase Structures, In
Proceedings of the 1st Human Language Technology Conference (HLT 2001), San Diego.
pp. 1–5.

Zhang, Y. and Clark, S. (2011), Shift-reduce CCG Parsing, In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1, (HLT 2011), Association for Computational Linguistics,
Stroudsburg, PA, USA. pp. 683–692.

Prior Polarity Lexical Resources
for the Italian Language

Simone Faro
1
, Valeria Borzì

1
, Arianna Pavone

2
 and Sabrina Sansone

2

1
Dipartimento di Matematica e Informatica, Università di Catania,

Viale A.Doria n.6, 95125, Catania, Italy
{faro,borzì}@dmi.unict.it

2
 Dipartimento di Scienze Umanistiche, Università di Catania,

Piazza Dante n.2, 95100, Catania, Italy
{pavone,sansone}@unict.it

Abstract. In this paper we present SABRINA (Sentiment Analysis: a Broad Re-
source for Italian Natural language Applications) a manually annotated prior
polarity lexical resource for Italian natural language applications in the field of
opinion mining and sentiment induction. The resource consists in two different
sets, an Italian dictionary of more than 277.000 words tagged with their prior
polarity value, and a set of polarity modifiers, containing more than 200 words,
which can be used in combination with non neutral terms of the dictionary in
order to induce the sentiment of Italian compound terms. To the best of our
knowledge this is the first prior polarity manually annotated resource which has
been developed for the Italian natural language.

1 Introduction

The preparation of manuscripts which are to be reproduced by photo-offset re-
quires special care. Papers submitted in a technically unsuitable form will be returned
for retyping or cancelled if the proceedings cannot otherwise be finished on time.
Sentiment classification, described in Bing and Lei (2012), Liu and Zhang (2012) and
Medhat et al. (2014), concerns the use of automatic approaches for predicting the ori-
entation of subjective content on text documents, with applications on many areas
including information retrieval, customer intelligence and recommender and advertis-
ing systems.

Such discipline, where sentiment, opinion or emotion, are identified and classified
in human written text is well known as sentiment analysis.

With the rapid increase of available subjective text on the internet in the form of
blog posts, comments in discussion forums and product reviews, mining the user’s
opinion can assist in a lot of potential applications in areas such as recommender sys-
tems, search engines and market research.

S. Faro, V. Borzì, A. Pavone, S. Sansone 106

Although some attempts have been made to extend solutions to other languages,
till date all research efforts found in sentiment analysis literature deal mostly with
English texts. However, in order to identify sentiment from a text, a lexical analysis of
the source language plays a crucial role.

An approach for detecting sentiment in texts concerns the use of lexical resources
such as a dictionaries of opinionated terms. For example the terms love , good and
favorite directly indicate a positive sentiment or an opinion, while words like hate ,
bad and scandal can be associated with a negative sentiment.

Among the others, SentiWordNet, by Esuli and Sebastiani (2006), is one of the
most used resource, containing opinion information on terms extracted from the
WordNet database by Miller (1995) and made publicly available for research pur-
poses. It is built via a semi supervised method and is considered a valuable resource
for performing opinion mining tasks, providing a readily available database of term
sentiment information for the English language.

Other previous works, as Pang and Lee (2002) and Esuli and Sebastiani (2006),
have been already proposed for making dictionaries for those sentiment words using
automatic approaches, however automatic identification of polarity orientation of
such words is also a difficult research issue, known as polarity identification . In this
context, it has been shown that the use of sentiment lexicons only provide a good
baseline i.e. without using any natural language techniques only dictionary based ap-
proach produce a good performance, as noticed in Das and Bandyopadhyay (2010b).

An alternative to automatic tagged resources are manually annotated lexicons
which turns out to be undoubtedly more trustable although they took long time to be
constructed and may be subject it annotator bias.

In this paper we present SABRINA (Sentiment Analysis: a Broad Resource for Ital-
ian Natural language Applications) a manually annotated prior polarity lexical re-
source for Italian natural language applications in the field of opinion mining and
sentiment induction. The resource consists in two different sets, an Italian dictionary
of more than 277.000 words tagged with their prior polarity value, and a set of polar-
ity modifiers, containing more than 200 words, which can be used in combination
with non neutral terms of the dictionary in order to induce the sentiment of Italian
compound terms. To the best of our knowledge this is the first prior polarity manually
annotated resource which has been developed for the Italian natural language.

The paper is organized as follows. In Section 2 we introduce the concept of prior
and posterior polarity and present some known lexicons which label terms with their
sentiment polarity. Then in Section 3 we present the new tagged resources which has
been created for the Italian language and discuss its properties. In Section 4 we briefly
introduce also a web based fronted for accessing the resources. We draw our conclu-
sions in Section 5.

2 Prior and Posterior Polarity

We would like to stress that the template should not be manipulated and that the
guidelines regarding font sizes and format should be adhered to. This is to ensure that
the end product is as homogeneous as possible.

Prior Polarity Lexical Resources for the Italian Language 107

A typical computational approach to sentiment analysis starts with prior polarity
lexicons where entries are tagged with their prior out of context polarity as human
beings perceive using cognitive knowledge.

The prior polarity of a term is the sentiment (positive or negative) that such word
evokes by itself. More specifically we could define the prior polarity of a term as the
polarity for its non-disambiguated meaning, out of any context.

For example the adjective cold evokes (in most cases) a fairly negative sentiment,
since it is used in sentences as a cold man , a cold winter or I feel cold . However,
depending on the context, we can find such term in sentences with a positive accepta-
tion, as in I love cold beer.

In contrast with the prior polarity of a word, the polarities associated to each word
sense is called in literature posterior polarity.

In most cases prior polarity lexicons are lists of positive and negative words, often
deployed as baselines or as features for other methods for sentiment analysis research,
as in Liu and Zhang (2012). In these lexicon, words are associated with their prior
polarity. For example it is presumable that the term wonderful is associated with
positive connotation while the term horrible is associated with negative one. These
approaches have the advantage of not needing deep semantic analysis or word sense
disambiguation to assign an affective score to a word and are domain independent. In
other word they are less precise but more portable.

2.1 Polarity Lexicons

Opinion lexicons are resources that associate sentiment orientation and words.
Their use in opinion mining research stems from the hypothesis that individual words
can be considered as a unit of opinion information, and therefore may provide clues to
document sentiment and subjectivity. These techniques could be broadly categorized
in two genres: manual annotation and automatic extraction of word polarity.

Manual annotation. Manual annotated lexicons are undoubtedly trustable but it
took long time and, for these reasons, tend to be constrained to a small number of
terms. By its nature, building manual lists is a time consuming effort, and may be
subject to annotator bias. Although such limitations manually created opinion
lexicons were applied to sentiment classification as seen in Pang et al. (2002),
where a prediction of document polarity is given by counting positive and nega-
tive terms.

Automatic detection. To overcome the above issues lexical induction approaches
have been proposed in the literature with a view to extend the size of opinion
lexicons from a core set of seed terms, either by exploring term relationships, or
by evaluating similarities in document corpora. Early work in this area, by Hat-
zivassiloglou and McKeown (1997), extends a list of positive and negative adjec-
tives by evaluating conjunctive statements in a document corpus. However in
most cases automatic processes still demands manual validations and, moreover,
may fail to cover the multiple domains as automatic processes trust on specific
corpus.

S. Faro, V. Borzì, A. Pavone, S. Sansone 108

SentiWordNet, by Esuli and Sebastiani (2006), is one of the most popular lexical
resources in Sentiment Analysis. It has been widely adopted since it provides a broad-
coverage lexicon, built in a semi-automatic manner, for English providing posterior
polarities scores for each term of the language. It is the result of the automatic annota-
tion of all the synsets of WordNet according to the notions of positivity, negativity,
and neutrality. Different senses of the same term may thus have different opinion-
related properties.

However in most opinion mining applications it is necessary to derive prior polari-
ties starting from posterior polarities scores have been proposed in the literature.
However, their performance varies significantly depending on the adopted variant.
For instance SentiWords is an inducted prior polarity lexicon with the higher coverage

for the English language. It contains roughly 155.000 words associated with a sen-
timent score included between -1 (strongly negative) and +1 (strongly positive),
learned from SentiWordNet. Words in this resource are also aligned with WordNet
lists. For the sake of completeness we notice also that other prior polarity sentiment
lexicons are available for the English language, such as Subjectivity Word List, in
Wilson et al. (2005), Word-Net Affect list, in Strapparava and Valitutti (2004), and the
Taboada’s adjective list, in Voll and Taboada (2007).

Although most of the efforts in literature have been devoted to the construction on
lexicons resource for the English language, in recent years some research endeavors
could be found in literature for solving the opinion mining problem in several lan-
guages and domains as in Das and Bandyopadhyay (2010b). Until date most of the
approaches to sentiment analysis in languages different from English consists in ap-
plying a word-translation from the target language to English before polarity extrac-
tion, which is applied by using one of the above described lexicons. Such solutions,
however, presents several problems including translation precision and disambigua-
tion of words.

Recently some efforts have also been made to produce polarity lexicons for lan-
guages different from English. For instance Das and Bandyopadhyay (2010a) pro-
posed multiple computational techniques like, WordNet based, dictionary based, cor-
pus based or generative approaches for generating SentiWordNet for Indian lan-
guages.

For the sake of completeness we mention also an interactive gaming approach used
for obtaining polarity values of english words, presented by Das and Bandyopadhyay
(2010b) who proposed a tool, named Dr. Sentiment, to create and validate Senti-
WordNet in 56 languages by involving Internet population.

3 New Broad Lexical Resources for the Italian Language

In this section we present SABRINA1 (Sentiment Analysis: a Broad Resource for
Italian Natural language Applications) a manually annotated prior polarity lexical
resource for Italian natural language applications in the field of opinion mining and

1 A tool for evaluating SABRINA is available at the anonymous url
http://www.dmi.unict.it/~faro/sabrina.

Prior Polarity Lexical Resources for the Italian Language 109

sentiment induction. The resource consists in two different sets, an Italian dictionary
of more than 277.000 words tagged with their prior polarity value, and a set of polar-
ity modifiers, containing more than 200 words, which can be used in combination
with non neutral terms of the dictionary in order to induce the sentiment of Italian
compound terms.

In recent years sentiment analysis in Italian texts has attracted attention due to
Evalita, an initiative devoted to the evaluation of Natural Language Processing and
Speech tools for Italian. In the recent Evalita 2014 edition the Sentipolc (SENTIment
POLarity Classification) task2 was proposed by Basile et al. (2014). It focused on
Italian texts from Twitter by launching a battery of related tasks with an increasing
level of complexity.

A first automatic annotated lexicon for the Italian language has been developed by
Basile and Nissim (2013), who exploited three existing resources, namely Multi-
WordNet by Ciravegna et al. (1994), SentiWordNet by Esuli and Sebastiani (2006),
and WordNet, by Miller (1995), to obtain an annotated lexicon of senses for Italian.

It was named Sentix and basically port the SentiWordNet annotation to the Italian
portion of MultiWordNet in a completely automatic fashion. Sentix was then used by
Castellucci et al. (2014) who described the UNITOR system that participated to the
Sentipolc task within the context of Evalita 2014.

The system has been developed as a workflow of Support Vector Machine classifi-
ers. Specific features and kernel functions have been used to tackle the different sub-
tasks, i.e. Subjectivity Classification, Polarity Classification and the pilot task Irony
Detection. To the best of our knowledge, besides Sentix, SABRINA is the first prior
polarity manually annotated resource which has been developed for the Italian natural
language.

Table 1. The distribution of polarity values assigned to Italian words

polarity value # of words % of words

strongly negative -1.0 22.651 8.17%

negative -0.5 49.074 17.70%

neutral +0.0 162.170 58.47%

positive +0.5 36.688 13.23%

strongly positive +1.0 6.739 2.43%

2 http://www.di.unito.it/~tutreeb/sentipolc-evalita14/

S. Faro, V. Borzì, A. Pavone, S. Sansone 110

Fig. 1. The polarity distribution of the 277.387 different words of the Ispell Italian
dictionary. Words are tagged with five different polarity values between -1 and +1

3.1 Italian Polarity Lexicon

Most sentiment lexicons in literature contain lists of tagged lemmas, i.e. the ca-
nonical form (or dictionary form) of a word. For instance the lastest version of Mul-
tiWordNet (1.39) contains around 58,000 Italian word senses and 41,500 lemmas
organized into 32,700 synsets aligned whenever possible with Princeton WordNet
English synsets. In using such kind of resources in sentiment analysis it is necessary
to operate a previous step of sense disambiguation in order to identify the correspon-
dent lemma of a word.

Our lexicon contains 277,387 words of the Italian language, including their inflec-
tion, used in order to express different grammatical categories such as tense, mood,
person, gender, etc. For instance the dictionary contains the verb correre (to run) and
its conjugations correvo , correrà , corressi , etc.

Such set of words have been manually tagged with their prior polarities. The anno-
tation process started from the word set in the Ispell Italian dictionary3 used for spell-
checking purpose. Each word of the lexicon has been associated with a polarity in the
range between -1 and +1 , where -1 indicates a strongly negative polarity while +1
indicates a very positive polarity. Mildly negative or positive opinion polarity have
been tagged, respectively, with values -0.5 and 0.5 . In addition terms with a neutral
polarity have been tagged with a value equal to 0 .

Two human annotators have been involved in the tagging process. The whole anno-
tation process took more than three months.

Figure 1 shows the polarity distribution of all words of the Italian dictionary. We
observed 162,000 words which have been tagged with a neutral sentiment polarity,

3 Ispell is a program that helps you to correct spelling and typographical errors in a file. When
presented with a word that is not in the dictionary, ispell attempts to find near misses that might
include the word you meant.

Prior Polarity Lexical Resources for the Italian Language 111

more than 70,000 with a negative polarity and more than 43,000 words tagged with a
positive polarity.

 Specifically words evoking a negative sentiment are divided in two sets, 22,651
with a strongly negative polarity and 49,074 words with a fairly negative polarity.
Similarly, in the case of words evoking a positive sentiment, we observed 6,739
words with a strongly positive polarity and 36,688 words with a fairly positive polar-
ity. Table 1 shows in details the number of words detected for each polarity value to-
gether with the percentage of words detected in each group. Notice that more than
40% of words have been assigned to a polarity values, while 58% of words have
been assigned with a neutral polarity.

3.2 Polarity Modifiers

 An adjective is a word or set of words that modifies a noun or a pronoun. In most
cases adjectives come before the word they modify. Some adjective can modify the
polarity of a noun with a non neutral prior polarity. For example the adjective raro
(rare) can be used in composition with the adjective bellezza (beauty) to emphasize
its positive meaning (a women with a rare beauty). Similarly the adjective esiguo
(scarse) can be used in combination with the noun valore (virtue) changing its posi-
tive polarity in a negative sentiment (a man with scarse virtue).

An adverb is a word or set of words that modifies verbs, adjectives, or other ad-
verbs. Generally an adverb answers how, when, where, or to what extent an action is
performed or an adjective is applicable. In this context some adverbs are able to mod-
ify the sentiment evoked by a verb or by an adjective with non neutral polarity. For
instance the adverb appena (barely) can be associated with an adjective in order to
reduce its positive (or negative) polarity, e.g. barely succeed or barely enthusiast .
Similarly the adverb davvero (truly) can be associated with an adjective like sor-
prendente (amazing) in order to emphasize its positive meaning.

In our work we collected a set of more than 200 polarity modifier which have been
manually tagged with a proportionality factor ranging between -2.0 and +2.0 . When a
term with a non neutral polarity x is associated with a modifier with a proportionality
factor y , we obtain a compound term whose polarity can be estimated as (x y) . De-
pending on the value of such factor we can distinguish four different kind of modifiers.

Emphasize. These modifiers have a proportionality factor greater than +1.0 and,
when associated with a term having a non neutral polarity, evokes a sentiment which
is stronger than the original one. thus they emphasize a positive (or negative) polarity
value.

proprio bello (really beautiful) = +1.6 +1.0 = +1.6
alquanto sgradevole (rather unpleasant) = +1.5 -1.0 = -1.5
grande valore (great virtue) = +1.8 +0.5 = +0.9

Moderate. These modifiers have a proportionality factor greater than 0 and smaller
than +1.0. When associated with a term having a non neutral polarity, they result in a
compound term with a moderated sentiment which is weaker than the original one.

S. Faro, V. Borzì, A. Pavone, S. Sansone 112

appena vinto (just gained) = +0.7 +0.5 = +0.35
mediamente brutto (ugly on average) = +0.5 -1.0 = -0.5
breve successo (brief success) = +0.6 +0.5 = +0.3

Reverse and moderate. This kind of modifiers have a proportionality factor greater
than -1.0 and smaller than 0.0 . When they are associated with a term having a non
neutral polarity, evoke a sentiment which is in opposition with the original sentiment,
but has an absolute value of polarity which is smaller than the original polarity.

poco ragionevole (little reasonable) = -0.7 +0.5 = -0.35
esiguo dolore (scarse pain) = -0.7 -1.0 = +0.7
limitato guadagno (limited benefit) = -0.8 +1.0 = -0.8

Reverse and emphasize. These modifiers have a proportionality factor smaller or
equal than -1.0 and, if associated with a term having a non neutral polarity, evokes a
sentiment which is stronger than the original one but with an opposite polarity.

insufficiente prestigio (insufficient prestige) = -1.2 1.0 = -1.2
minime scomodità (minimal inconvenience) = -1.0 -0.5 = +0.5
scarso valore (lacking virtue) = -1.2 +0.5 = -0.6

4 A Web Based Frontend

 We implemented a simple web based tool in order to access the lexical resource
presented in this paper. In order to allow a blind review of the paper we uploaded the
tool in a free hosting server. The tool is accessible at the url

http://www.dmi.unict.it/~faro/sabrina

The tool allows to evaluate single Italian terms or compound terms, where words

with a non neutral polarity are associated with modifiers, as described above. More-
over each example which you can find above in the paper is tagged with an anchor
which redirect the reader to the web page of the tool in order to evaluate the sentiment
value of the example itself.

If a whole sentence is tested by the tool, containing more than one term with non
neutral prior polarity, then a straightforward approach is applied in order to compute
an approximation of the polarity of the whole sentence. In particular the set of polarity
values contained in the sentence is arranged from the lowest one to the highest one
and the median of such a set is taken as the polarity value of the whole sentence. Spe-
cifically the median is the number separating the higher half of the set of polarity val-
ues from the lower half. If there is an even number of polarity values, then there is no
single middle value. Int this cases the median is usually defined to be the mean of the
two middle values.

Prior Polarity Lexical Resources for the Italian Language 113

5 Conclusions

In this paper we presented a new lexical resource for the Italian language contain-
ing more than 277.000 words which have been manually tagged with their prior polar-
ity values, i.e. a value indicating the sentiment which such words evoke when are out
of any context. We also provide an additional lexical resource containing a set of
more than 200 polarity modifiers which can be used for inducing the sentiment polar-
ity of Italian compound terms. Future works will be devoted to test the effectiveness
of such resource in opinion mining task.

References

Basile V. and Nissim M. (2013) Sentiment analysis on Italian tweets. In Proceedings of the
4th Ws: Computational Approaches to Subjectivity, Sentiment and Social Media Analysis,
pages 100–107.

Basile V., Bolioli A., Nissim M., Patti V., and Rosso P. (2014) Overview of the Evalita
2014 SENTIment POLarity Classification Task. In Proceedings of the 4th evaluation cam-
paign of NLP and Speech tools for Italian (EVALITA), Pisa, Italy.

Castellucci G., Croce D., De Cao D., Basili R. (2014) A Multiple Kernel Approach for
Twitter Sentiment Analysis in Italian. In Proceedings of the First Italian Conference on
Computational Linguistics (CLIC-IT).

Ciravegna F., Magnini B., Pianta E., Strapparava C. (1994) A Project for the Construction
of an Italian Lexical Knowledge Base in the Framework of WordNet IRST Technical Re-
port #9406-15.

Das A. and Bandyopadhyay S. (2010) SentiWordNet for Indian Languages. Proceedings
23rd International Conference on Computational Linguistics, pages 56–63.

Das A., Bandyopadhyay, S. (2010) Towards the Global SentiWordNet. Proceedings of the
24th Pacific Asia Conference on Language, Information and Computation.

Bing L. and Lei Z. (2012) A Survey of Opinion Mining and Sentiment Analysis. Book
Chapter, Mining Text Data, Springer US, pages 415–463.

Esuli A. and Sebastiani F. (2006) SentiWordNet: A publicly available lexical resource for
opinion mining. In Proceedings ofLREC.

Hatzivassiloglou, V., and McKeown, K. (1997). Predicting the Semantic Orientation of
Adjectives. Preceedings of the 35th Annual Meeting of the Association of Computational
Linguistics (ACL’97). Madrid, Spain, pp. 174-181.

Liu B. and Zhang. L. (2012) A survey of opinion mining and sentiment analysis. Mining
Text Data, pages 415–463.

Medhat W., Hassan A., Korashy H., (2014) Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams Engineering Journal, Volume 5, Issue 4, Pages 1093–1113.

S. Faro, V. Borzì, A. Pavone, S. Sansone 114

Miller G. A. (1995) WordNet: A Lexical Database for English. Communications of the
ACM Vol. 38, No. 11: 39-41.

Pang B., Lee L., and Vaithyanathan, S. (2002) Thumbs up? Sentiment Classification using
Machine Learning Techniques. Proceedings of EMNLP.

Strapparava C. and Valitutti A. (2004) WordNet-Affect: an affective extension of WordNet.
In Proceedings of LREC 2004, pages 1083–1086, Lisbon.

Voll K. and Taboada M. (2007) Not All Words are Created Equal: Extracting Semantic
Orientation as a Function of Adjective Relevance. In Proceedings of the 20th Australian
Joint Conference on Artificial Intelligence. pages. 337-346.

Wilson T., Wiebe J. and Hoffmann P. (2005) Recognizing Contextual Polarity in Phrase-
Level Sentiment Analysis. Proceedings of HLT/EMNLP 2005.

An Orthography Transformation Experiment with
Czech-Polish and Bulgarian-Russian Parallel Word Sets

Andrea Fischer, Klara Jagrova, Irina Stenger,
Tania Avgustinova, Dietrich Klakow and Roland Marti

Saarland University, Collaborative Research Center (SFB) 1102:
Information Density and Linguistic Encoding,
Campus A 2.2, 66123 Saarbrücken, Germany

Project C4: INCOMSLAV
Mutual Intelligibility and Surprisal in Slavic Intercomprehension
{kjagrova, avgustinova}@coli.uni-saarland.de,
{ira.stenger, rwmslav}@mx.uni-saarland.de,

{andrea.fischer, dietrich.klakow}@lsv.uni-saarland.de
http://www.sfb1102.uni-saarland.de

Abstract. This article presents the methods and findings of a computational
transformation of orthography within two Slavic language pairs (Czech-Polish
and Bulgarian-Russian) on different word sets. The experiment aimed at inves-
tigating to what extent these closely related languages are mutually intelligible,
concentrating on their orthographies as linguistic interfaces to the written text.
Besides analyzing orthographic similarity, the aim was to gain insights into the
applicability of rules based on traditional linguistic assumptions for the pur-
poses of language modelling.

1 Introduction

We are interested in identifying the mechanisms by which languages en- and de-
code information, focusing on the phenomenon of receptive multilingualism observed
within the Slavic language group. We are framing the problem as one of (statistical)
language model adaptation from a L1 to L2, incorporating results from traditional
approaches and comparative historical linguistics. The key idea is that comprehension
of a text in an unknown, but related language should be better when the language
model adapted for processing the unknown language exhibits relatively low average
surprisal.

This contribution elaborates on an inter-language orthographic transformation ex-
periment1 for which, based on orthographic features, different mappings between
selected language pairs were tested. Two language pairs for which a relatively high
degree of mutual intelligibility could be expected were chosen: Czech-Polish (CS-PL,

1 The experiment took place in the initial phase of the INCOMSLAV project at Saarland Uni-
versity, launched in October 2014. Morphology, lexis and syntax will be subject to later project
phases.

A. Fischer, K. Jagrova, I. Stenger, T. Avgustinova, D. Klakow, R. Marti

116

both West Slavic, and both using the Latin script with a number of additional diacritic
signs) and Bulgarian-Russian (BG-RU, South and East Slavic, both using Cyrillic
script). The probably best known and most obvious example for such orthographic
correspondences of characters between Czech and Polish are v:w, h:g, č:cz, etc.

We collected and systematized traditional linguistic assumptions about how Slavic
languages developed from a reconstructed parent language – referred to as Proto-
Slavic or Common Slavic – to the modern varieties of Czech, Polish, Bulgarian and
Russian (Schenker 1993). Although this parent language existed before any Slavic
script appeared, historical linguistics was able to reconstruct how and in which stages
the individual modern varieties moved from unity to diversity in the course of several
centuries (Carlton 1991:9). The key features which reflect this development and now
distinguish one Slavic language from another had their origin in Proto-Slavic times.
Thus, there is a common base in the linguistic systems of the individual languages.

The existing orthography rules can be considered a result of both linguistic and
sociolinguistic factors (Sgall 1987; Penzl 1987). Orthography does not only follow
phonological, morphological and diacritical principles. It is also the syntactic, seman-
tic, etymological and historical factors that are reflected in the graphematic represen-
tation of a language. Apart from this, written language is subject to manipulation by
rules and laws created by governing authorities (e.g. in the process of spelling re-
forms). Kučera explains the specific character of Cyrillic as follows:

"Like Glagolitic and unlike the Latin alphabet, Cyrillic was a script customized to
the contemporaneous Slavic languages, with a highly efficient and systematic one-
to-one correspondence between its graphemes and the Slavic set of phonemes.
[…] [T]here have been few exceptions from the correspondence, a fact that was
in marked contrast with the widespread use of digraphs in the systems based on
the Latin alphabet. Thus, there was significantly more asymmetry, and conse-
quently more looseness in the relation of the Slavic phonemes to the Latin graph-
emes than in their relation to Cyrillic graphemes." (Kučera 2009:74)

2 Experimental Setup

Parallel contemporary vocabulary lists were analysed in terms of their ortho-
graphic similarity and the applicability of the correspondence patterns that are as-
sumed in comparative Slavic linguistics. The objective of our transformation experi-
ment was, in the first place, to validate (confirm or reject) the traditional assumptions
by applying orthographic correlation rules, which were formulated on the basis of
historical comparative linguistics, on contemporary word material. As a result of this
experiment it should be possible, with the help of the validated rules, to describe or
even predict the written representation of units of the source language a target lan-
guage. If however the traditional assumptions appear not to hold for certain vocabu-
lary (sub-) sets, the relevant orthographic correlations were to be directly derived
from the compiled parallel word lists.

An Orthography Transformation Experiment

117

2.1 Rules Inferred from Traditional Linguistic Assumptions

To account for the historically conditioned variation between the languages under
investigation, we first collected and worked out orthographic correlations reflecting
the development of the sound systems as established in historical comparative lin-
guistics. We attempted to accommodate the main lines of the sound system evolution,
from Common Slavic to individual modern Slavic languages, focusing on the follow-
ing aspects: (i) development of vowels and consonants, (ii) development of specific
sound combinations, and (iii) the metathesis of liquids.

The next step when designing the rule sets for the transformation experiment was
a change of perspective, away from the perspective Common Slavic vs. all other to-
wards a comparison of language pairs. In the diachronically-based language-family-
oriented collection of correspondences2 there were 132 for CS-PL vs. 126 for BG-RU
(i.e. h:g:г:г for CS-PL-BG-RU). A considerable number of these rules stated regular
one-to-one correspondences for the respective language pairs, for example such rules
as p:p for CS-PL and к:к for BG-RU. Consequently, only those rules were applied in
the experiment that represent a mismatch between target and source language units
(e.g. č:cz for CS-PL and ъ:у for BG-RU), so that only 81 rules for CS-PL and 48
rules for BG-RU were applied to the word lists. This suggests a greater orthographic
diversity between Czech and Polish than between the other two languages. Equal-to-
equal grapheme correspondences were not considered a transformation. Such a situa-
tion in fact represents a reading intercomprehension scenario in which equal graph-
emes are not expected to cause any additional surprisal for readers. The remaining
transformation rules were then applied on parallel word lists and checked for their
practical usability.

Czech and Polish: Although both use the Latin script, they differ in their diacriti-
cal systems and the use of digraphs. While CS sibilants are usually represented by a
single character, PL uses digraphs instead, at least for hard sibilants, e.g. č:cz. In the
experimental setup, a letter is defined as an independent unit including diacritics, if
applicable. For the purposes of the current automatic transformation, digraphs are
considered two characters, e.g., PL sz and CS ch. There are 15 Czech letters (á, č, ď,
é, ě, í, ň, ř, š, ť, ú, ů, v3, ý, ž) that do not exist in PL, and 9 Polish letters (ą, ć, ę, ł, ń, ś,
w4, ż, ź) that do not exist in CS. Still, these letters are expected to be legible for read-
ers of the respective target language (i.e. by ignoring diacritical signs) and thus
should not impair reading intercomprehension to a large extent – especially when the
actual phonetic representation is similar (e.g. á vs. a, although this fact might not be
known to the reader).

Bulgarian and Russian both use the Cyrillic script and there are only slight dif-
ferences in the alphabets. The use of digraphs and diacritics is rare in the Cyrillic-
based systems. The Russian letters э, ё5, ы do not appear in BG. Generally, one can

2 The analyses were primarily collected from Bidwell (1963), Žuravlev et al. (1974-2012) and
Vasmer (1973).
3 The letter v is only used in Polish texts when it is part of a named entity or a foreign word.
4 The letter w is only used in Czech texts when it is part of a named entity or a foreign word.
5 The letter ё is used mostly only in dictionaries and schoolbooks.

A. Fischer, K. Jagrova, I. Stenger, T. Avgustinova, D. Klakow, R. Marti

118

distinguish two important orthographic differences: unfamiliar graphemes represent-
ing unfamiliar or familiar phonemes (these differences only apply to a limited number
of graphemes between BG and RU); graphemes that seem to be familiar, but in fact
the grapheme-phoneme correspondences are different (e.g. ъ and щ in BG are pro-
nounced [ə] and [ʃt], while their RU counterpart ъ has no phonetic, but an ortho-
graphic function (hard sign) and щ is pronounced [ʃʧ], different rules for the reduc-
tion of unstressed vowels etc.).

2.2 Word Sets Used

In the initial phase of INCOMSLAV, we started collecting all parallel word lists
and corpora that were available to us in digital format. The main inspiration and the
first source of Slavic word lists was the EuroComSlav website. We decided to test the
traditional assumptions on word lists instead of full texts in order to focus on the or-
thographic level only and thus exclude such influences that are caused by individual
morphological rules from our analysis as far as possible.

Verb forms play a special role in the BG-RU comparison. While we analyzed in-
finitive verb forms in the CS-PL lists, we had to replace all infinitives in the BG-RU
lists with the 3rd person present tense forms of the verbs. This was done to ensure a
more appropriate comparison of RU with BG, as there are no infinitive forms in BG
and 1st person forms are highly irregular, which makes them less suitable for an or-
thographic comparison.

There were three types of basic parallel lists available for all four languages: a
Pan-Slavic list and a list of internationalisms on the EuroComSlav website, and the
online version of the Swadesh list. The EuroComSlav lists had to be corrected for
errors. All lists were slightly modified, as formal non-cognates (i.e. CS-PL mnoho –
wiele [many/much]; BG-RU ние – мы [we]) were removed and formal cognates, if
existing, were added to the lists, where the pairs consisted of non-cognates (i.e.
mężczyzna [man] substituted by mąż [husband] in CS-PL muž – mąż; звяр [beast]
added to its RU formal cognate зверь [animal, beast] for the BG-RU pair зверь –
звяр). Focusing only on the formal aspect of the lexemes, we did not take semantics
into account. This explains the variation in the amount of words for each list in each
language pair.

Table 1. Word sets with numbers of items

 Total number of items
Word list CS-PL BG-RU
Swadesh list 212 227
Panslavic list 455 447
Internationalism list 262 261
Homonyms 1553 X
Dictionary 80963 X

An Orthography Transformation Experiment

119

For the CS-PL pair we implemented two additional large word lists which might
have a statistically more representative effect: A set of homonyms, extracted from
(Szałek and Nečas 1993), as well as an open-source digital version of a CS-PL dic-
tionary containing more than 80,0000 lexemes (Kazojć 2010).

2.3 Method

If all characters in a word of L1 are the same as in the corresponding word in L2,
the word was automatically listed as input identical. If there is a mismatch of one or
more positions in the word pair, the computer tries to apply one or more rules from
the transformation rule set. If all characters in a word of L1 can be transformed with
the help of the rules into the L2 word, the word pair is listed as correctly transformed.
Rules for strings of characters take precedence over rules for single characters. There
is also a chance that a unit from L1 corresponds to a different unit (character or string
of characters) in L2, which is not part of the traditional linguistic rule set entered for
this experiment. In such a case, these words are classified as untransformed.

The computer code for the implementation of the orthographic transformation
rules between language pairs (by Andrea Fischer and Ali Shah) is provided below.

method Transformations(w, T)

input: a word w from language L1, the set T of admissible transformation rules
output: all L2 transformations of w obtained by applying rules from T

transformations = {(w, [])} // initialize the set of transformations with just
the word and no applied transformations

new_variants = {} // temporary iteration variable

while True: // iterate until no new transformations are found anymore

for t in T: // process each transformation rule
for variant, path in transformations: // apply this rule to
all currently known variants of the original word

for new_word, application_pattern in Transform-
WithRule(variant, t): // apply the rule t in each com-
bination of positions where it is applicable

new_variants.add((new_word, path, applica-
tion_pattern)) // record the new variant plus
the path by which it was obtained

if words(new_variants) + words(transformations) ==
words(transformations): // after processing all rules, see if there are
any new words

break // stop iteration if no new words were found
else:

transformations.addAll(new_variants) // record the newfound
transformations and continue iterating otherwise

return transformations

A. Fischer, K. Jagrova, I. Stenger, T. Avgustinova, D. Klakow, R. Marti

120

2.6 Results of the Implementation of the Rules

Fig. 1. Results of implementation for both language pairs
 Swadesh Pan-Slavic Internationalisms
CS
to
PL

BG
to
RU

Legend: input identical, correctly transformed, untransformed

The most obvious finding is the different proportion of orthographically identical

words in the language pairs (max.: 33.21 % for CS-PL vs. 62.45 % for BG-RU). The
internationalism lists, consisting only of nouns, show the highest proportion of ortho-
graphically identical words in both pairs. An explanation for the low rate of identical
words in the BG-RU Swadesh list is the high rate of morphological differences re-
flected in orthography, e.g. different endings of male adjectives and verb forms in 3rd
person singular – here the orthographic rule set can be applied only in very few cases.
However, the rule set works well for the CS-PL Swadesh list (best transformation rate
of the experiment: 47.17 %).

The Swadesh lists consist of a relatively high rate of verbs and adjectives and they
are the only lists containing a number of pronouns, prepositions and numerals. The
Pan-Slavic lists include nouns, verbs and adjectives. While for CS-PL the proportion
of untransformed items is relatively constant throughout the three lists, the untrans-
formed part for BG-RU ranges from 64.32 % with the Swadesh list to 32.18 % with
internationalisms.

Tables 2a and 2b display the five most frequently used rules for each word set,
given the rule from L1 to L2 along with the number showing how often this rule was
applied in words that were classified as correctly transformed. Directly under the
rules, one example word pair for which this rule holds is provided.

An Orthography Transformation Experiment

121

Table 2a. Most frequent transformation rules applied on the different lists
Czech to Polish

Swadesh Pan-Slavic Internat. Homonyms Dictionary
t:ć,24 ý:y,45 á:a,15 v:w,307 v:w,991
dát–dać dýně–dynia bál–bal věc–wiec kráva–krowa
ý:y,21 v:w,42 e:a,12 ý:y,175 t:ć,663
nový–nowy voda–woda linie–linia výlet–wylot prát–prać
v:w,20 t:ć,37 v:w,8 t:ć,163 á:a,515
dva–dwa bolet–boleć káva–kawa tma–ćma pára–para
á:a,10 l:ł,24 í:e,5 á:a,142 e:a,353
já–ja zlý–zły talíř–talerz čára–czara duše–dusza
l:ł,9 h:g,20 l:ł,4 l:ł,111 ý:y,336
teplý–ciepły hlava–głowa kanál–kanał látka–łatka dým–dym
 rá:ra,4
 rádio–radio

CS-PL: The success of t:ć can be explained by the high rate of verb endings

(morphological feature reflected in orthography) in all lists except in international-
isms, although this rule was originally inferred from the diachronically-based rule for
deset - dziesięć. Another outstanding rule is ý:y which is due to a high rate of adjec-
tive endings in the lists, although this rule was originally derived from a historical
correspondence in word stems. For some rules such as á:a and l:ł it may be assumed
that they will not pose a problem to reading intercomprehension because the diacritics
can be ignored. The v:w rule represents characters that would not appear in the other
language. The success of applying these rules in this experiment depends strongly on
their overall frequency of the individual characters in the word lists, i.e. there is a
higher frequency of h:g in Pan-Slavic vocabulary relative to h:g in all other lists. The
strongest tendencies for vowel changes are from e:a, from í:e, which both apply for
noun endings. As a result, the findings reveal a strong applicability of rules that refer
to endings, to letters that are not part of the inventory of one language and to letters
that are only distinguished by the absence or presence of diacritical signs.

A. Fischer, K. Jagrova, I. Stenger, T. Avgustinova, D. Klakow, R. Marti

122

Table 2b. Most frequent transformation rules applied on the different lists
Bulgarian to Russian

Swadesh Pan-Slavic Internation.
ъ:у,8 я:е,17 л:ль,9
път–путь вяра–вера цел–цель

я:е,7 ъ:у,10 и:ы,1
цвят–цвет дъб–дуб музика–музыка

и:ы,6 и:ы,10 н:нь,1
ти–ты диня–дыня aмин–аминь

е:я,6 е:я,9 р:рь,1
език–язык ред–ряд календар–календарь

е:о,4 е:ё,8 а:я,1
езеро–озеро еж–ёж плаж–пляж

BG-RU: The most frequent orthographic correspondences of the transformation
experiment in the Swadesh and Pan-Slavic lists are between the orthographic
representations of vowels: ъ:у; е:я; я:е; и:ы; e:o; е:ё. The orthographic differences
could generally be explained, on the one hand, by the different development of the
vowels from Common Slavic to the modern Slavic languages and, on the other hand,
by subsequent spelling reforms in these languages with the aim to harmonize their
writing system to the sound system, i.e.:
ъ:у – explained by the different development of the back nasal vowel */ǫ/ of
Common Slavic to /�/ in Bulgarian and to /u/ in Russian.
е:я – also explained by the different development of the front nasal vowel */ȩ/ of
Common Slavic to /е/ in Bulgarian and to /´a/ in Russian.

The most frequent orthographic correspondences in the internationalism list, be-
sides the correlations of orthographic representations of the vowels a:я and и:ы, here
concern the orthographic representation of consonants, e.g. л:ль, н:нь, р:рь, which
can be explained by the difference between non-palatalized consonants in Bulgarian
and palatalized consonants in Russian. It must be kept in mind, however, that most
internationalisms in the list are borrowings from other languages and thus constitute a
rather specific problem. Usually, in orthographies using Cyrillic the pronunciation of
the borrowing may be preserved and the spelling may be changed to correspond to
the orthographic rules of the borrowing language (Kučera 2009). Borrowings were
generally handled in harmony with the phonological and morphological principles of
each particular language, which could be presented by other orthographic correspon-
dences that are distinct from our diachronically-based transformation rules. This
could be an explanation for the fact that only five of the transformation rules could be
successfully applied on the internationalism list. However, there already is a high rate
of identical words in this list.

The overall results for both language pairs show that there are different princi-
ples in how the diachronically-based transformation rules work. For BG-RU, the re-

An Orthography Transformation Experiment

123

sults confirm the validity of the rule set to a high degree for the reasons mentioned
above. For CS-PL we found that the traditional rules were valid not only for word
stems as explained in historical comparative research, but also for other parts of
words, mainly endings. The rules do not only cover orthographic features, but also
those morphological features to which the same rules apply. The words classified as
correctly transformed were much lower in number for BG-RU. This could be ex-
plained by the fact that in the experiment, words in which there was only one unit that
could not be transformed with the rule set, were sorted out by the program as untrans-
formed. For example the adjective pair тих (BG) vs. тихий (RU) could not be cor-
rectly transformed, because there is no rule saying ø [nothing] in BG corresponds to -
ий in RU – this would require a morphological rule set.

The difference in the language pairs confirms the isolated position of Bulgarian in
contrast to the other languages under focus, especially because of its morphology.

3 Conclusions

In the present application of diachronically-based orthographic transformation
rules between the two language pairs CS-PL and BG-RU we tried to find out to what
extent traditional linguistic assumptions explain the differences between parallel word
sets in the languages. The computational transformation experiment revealed that
there are different percentages of orthographically identical words in both language
pairs. For all word sets, the initial orthographic similarity is greater for BG and RU
(max.: 62.45 % for internationalisms) than for CS and PL (max.: 33.21 % for interna-
tionalisms), which suggests a greater degree of mutual intelligibility for BG-RU by
the presence of internationalisms than in the other pair.

For those words in the parallel lists that were not identical in terms of orthogra-
phy, a rule set of inter-language orthographic correspondences was applied. For the
CS-PL combination, these orthographic transformation rules led to better results –
44.84 % for the Pan-Slavic vocabulary list, while the results for BG-RU in the same
list amounted to only 23.04 %. The low success rate for the BG-RU orthographic
transformations suggests a high influence of morphological differences between these
languages (zero endings for BG adjectives, different verb endings, etc.). While inves-
tigating the CS-PL orthographic correspondences, we found that the morphological
features are reflected in the respective orthographies to a similar degree and are there-
fore comparable. This suggests that knowledge of those orthographic correspondence
rules might improve reading comprehension, e.g., for a Czech native speaker reading
Polish. The knowledge of orthographic correspondences between BG and RU, in
contrast, is not expected to lead to such large improvement in reading comprehension
as in the other pair, when the respective other language is unknown to the reader.
However, knowledge of morphological cross-language correspondence principles
might be much more helpful here.

A. Fischer, K. Jagrova, I. Stenger, T. Avgustinova, D. Klakow, R. Marti

124

4 Outlook

Orthography was subject to the first of six work packages in the INCOMSLAV
project. In the near future a series of on-line reading (inter-)comprehension experi-
ments with Slavic native speakers is planned to validate the findings of this and other
computational experiments. The results from the experiments with human readers will
be discussed in the framework of several other computational estimations and calcu-
lations of similarity and distance. The upcoming project phases will cover morphol-
ogy, lexis and syntax. On the linguistic level, more similarities and discrepancies in
the subsystems of the languages will be investigated. Both the nature of the phenom-
ena and the strength of the effects are relevant at these levels.

For the information-theoretic part of the project, the aim will be to adapt feature-
based n-gram language models for cross-language use via latent space and similarity.
The information-theoretical results will then be analyzed again from a linguistic point
of view and interpreted together with the results of reading intercomprehension ex-
periments with Slavic native speakers.

References

Bidwell, C.E. (ed) Slavic Historical Phonology in Tabular Form. Mouton & Co., The
Hague, 1963

Carlton, T. R. (ed) Introduction to the Phonological History of the Slavic Languages.
Slavica Publishers, INC. Columbus, Ohio, 1991

Kučera, K. (2009) The Orthographic Principles in the Slavic Languages: Pho-
netic/Phonological. In: Kempgen, S., Kosta, P., Berger, T., Gutschmidt, K. (eds.) The
Slavic Languages. An International Handbook of their Structure, their History and their
Investigation. Volume 1. Walter de Gruyter, Berlin/New York, pp. 70-76

Penzl, H. (1987) Zur alphabetischen Orthographie als Gegenstand der Sprachwissenschaft.
In: Luelsdorff, P. A. (ed.): Orthography and Phonology. John Benjamins Publishing Com-
pany, Amsterdam/Philadelphia, pp. 225-238

Schenker, A.M. (1993) Proto-Slavonic. In: Comrie, B., Corbett, G.G. (eds.) The

Slavonic Languages, Routledge, London and New York, pp. 60-125

Sgall, P. (1987) Towards a Theory of Phonemic Orthography. In: Luelsdorff, P. A. (ed.)
Orthography and Phonology. John Benjamins Publishing Company, Amster-
dam/Philadelphia, pp. 1-31

Dictionaries

Szałek, M.; Nečas, J. (eds) Czesko-Polska Homonymia. Poznań, 1993

Vasmer, M (ed) Etimologičeskij slovar' russkogo jazyka. Moscow, 1973

Žuravlev, A. F., et al. Etimologičeskij slovar' slavjanskich jazykov. Vyp. 1-37. Moscow,
1974-2012

An Orthography Transformation Experiment

125

Online documents

Swadesh list:
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Slavic_languages.
Accessed 22/04/2015

Pan-Slavic list:
http://www.eurocomslav.de/kurs/pwslav.htm. Accessed 22/04/2015

Internationalism list:
http://www.eurocomslav.de/kurs/iwslav.htm. Accessed 22/04/2015

Kazojć, J. (2010) Otwarty słownik czesko-polski V.03.2010 (c)
http://www.slowniki.org.pl/czesko-polski.pdf. Accessed 22/04/2015

Hierarchies of Terms on the Euromaidan Events:
Networks and Respondents' Perception

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza and S. Volskaya

Institute for Information Recording NAS of Ukraine, Kiev, Ukraine
NTUU “Kiev Polytechnic Institute”, Kiev, Ukraine

{dwlande, asnarskii}@gmail.com
Saint-Petersburg State University, Saint-Petersburg, Russian Federation

{iagounova.elena, katpronoza, svetlana.volskaya}@gmail.com

Abstract. In this paper we describe the construction methodology of a network
of natural terms hierarchy on the base of the subject arrays of news texts. The
proposed method is illustrated using automatic processing of the full texts of the
articles about the Euromaidan events in Kiev.

1 Introduction

Constructing a large domain-specific ontology is a challenging problem. The on-
tology development process includes such a task as terms learning, but the problem of
effective unsupervised terms learning is unsolved, and the problem of the links identi-
fication and automatic network construction is also still open.

Another important task is the formal estimation of the number of new topics in data
streams. Appearance of new topics naturally causes appearance of the series of terms
marking new themes. A linguist dealing with news texts has to know the specifics of
different segments of media data streams. Particularly, sometimes one can correlate
separate news topics with the subjects of whole data flows using lexical features.

In this paper we propose an approach to the construction of a terminological basis
for interrelated events, which are described in the messages of electronic media, and
for separate subjects of data flows for a certain time period. We also consider some
principles of making a language network on the base of the selected terms. Correla-
tion of unit message terminology with general subject terminology can be considered
as a formal criterion of event relevance to the considered subject area (sequence of
events).

The problems of events modeling and analyzing their perception by the informants
have been an object of many recent studies [0]. Unsupervised terms extraction task is
also widely addressed by the researchers. Terms extraction methods are either statis-
tics-based (e.g., clustering [0]), or use fine-grained linguistic analysis (e.g., depend-
ency parsing [0]). Some researchers also employ external sources of knowledge like
Wikipedia or Wordnet [0]. Our method is statistics-based. It is fast and language in-
dependent and does not demand any linguistic resources.

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza, S. Volskaya 128

2 Data

The data for our research consists of news reports about the confrontation in Kiev
in 2013-2014, which was caused by so-called Euromaidan. We collected more than
200 thousand of news reports from RuNet web sites during the period from November
2013 till March 2014.

First of all, it is necessary to choose a text corpus for the further analysis. To col-
lect the data for our research, we use “InfoStream” – a system of content monitoring.
To retrieve the news reports which are relevant to the subject area we make the fol-
lowing request:

(maydan|euromaidan)&(beat|dispersal|storm|
berkut|molotov|titushk|was killed) & lang.RUS.

The collected corpus consists of more than 200 thousand of news reports. On the base
of the corpus the dynamics of subject reports should be identified. The mode «Dy-
namics of events» in the system of content monitoring «InfoStream» allows getting
information about the number of published articles which are relevant to the request
for a certain time period. This information is presented in the form of a plot (see
Fig. 1).

Fig. 1. Dynamics of the number of publications which are relevant to the request

The time dynamics data is normalized for each day, and time series is built. Each

relative frequency value in this series equals the ratio of the number of subject reports
per day to the number of all the reports per day. It allows us to ignore weekly perio-
dicity in the number of subject reports.

After we get the information about publications dynamics, the critical points
should be identified. These critical points are the local maxima of time series in the
dynamics of publications [3].

On the base of these results three dates were chosen (2013.11.30, 2014.01.22,
2014.02.19) as critical points for the sequence of events under consideration.

Hierarchies of Terms on the Euromaidan Events 129

After the critical points are selected, it is necessary to extract the main sequences
of subject reports which are relevant to the request for the necessary dates (see Fig. 2).
It is also done via the system of content monitoring.

Fig. 2. Main subject concatenations for necessary dates

3 Construction method of Network of Natural Term Hierarchy

3.1 Extraction of Terms for Ontology

For the further analysis we build three corpora from the reports. Each corpus corre-
sponds to one of the three found critical points; lexical features of each corpus are the
objects of monitoring.

Preprocessing of these corpora includes division of text into fragments (separate
reports, paragraphs, sentences, words, bigrams, and trigrams), deletion of analpha-
betical symbols and cutting off inflections – stemming (this is an option).

Then each term from the text (unigram, bigram or trigram) receives an estimation
of its «discriminant power», represented by TF-IDF. The preliminary technique de-
scription was published in [12].

3.2 Construction of Terms Hierarchy

The process of network constructing is based on using semantically important text
elements. To identify these elements in the text one can use methods described in [0],
[0] and [0]. An advantage of a network built on the base of important text elements,
pivot words and words combinations is that such a network embraces separate knowl-
edge domains.

Extracting of the terms for a network is done using the feature based on the dis-
criminant power of words. Nevertheless one should remember that this feature cannot
guarantee high quality of ontology. Most frequent words from the chosen subject
area, which have low discriminant power (for example, the words “Ukraine”, “Mai-

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza, S. Volskaya 130

dan”, “Protest” in the news corpus about Euromaidan in Kiev) could be the most im-
portant ones for the network construction.

The content of the corpora is the base of the future network. In this work we con-
sider a natural network. We call the network natural due to the fact that its construc-
tion does not include any special methods of semantic analysis (including part of
speech tagging). All the relations in this network are determined by the positions of
the words and word combinations, which are extracted from the texts of statistically
significant size. Terms hierarchy which is built completely automatically is the base
for the further automatic ontology construction with experts.

In our work we propose a method of constructing terms hierarchy which includes
the construction of a compactified horizontal visibility graph (CHVG) and terms
weights recalculation (for unigrams, bigrams and trigrams) [0].

Language network is built in three stages using the CHVG algorithm.
1. In the first stage nodes sequence is marked on the horizontal axis. Each node

corresponds to the word in the order it appears in the text. On the vertical axis TF-IDF
weights are put. Vertical lines are drawn between these TF-IDF values and their pro-
jections on the x-axis.

2. In the second stage a traditional horizontal visibility graph is built [0]. An edge
is drawn between every two nodes if these nodes are in “direct visibility”. “Direct
visibility” of the nodes means that they can be connected by a horizontal line which
does not intersect any vertical line in the plot.

3. In the third stage we merge the nodes with the same words. The edges of such
nodes are also merged. Such procedure is called graph compactification. Node
weights are recalculated. TF-IDF values are replaced with the corresponding node
degrees in CHVG. Finally, the terms are sorted according to their new CHVG weights
in descending order. Stop words are excluded from further analysis. In this paper a list
of stop words is formed using following web-resources:
https://code.google.com/p/stop-words/downloads/list,
http://www.ranks.nl/stopwords/, http://www.textfixer.com/resources/common-
english-words.txt.

Experts estimate the size of the network (let us denote it by N). Then N unigrams,
N bigrams and N trigrams with the largest CHVG weights are selected. The network
is constructed using the obtained terms. In this network nodes identify terms and links
represent part-whole relations between the terms. Fig. 3 presents an example of the
terms hierarchy construction. Different geometric figures denote different words in
Fig. 3. Unigrams are grouped in the first column, while bigrams and trigrams are in
the second and third columns respectively. If a unigram belongs to some bigram, or a
bigram is a part of some trigram, an arrow is drawn between them (denoting a part-
whole relation). The set of terms together with the links between them forms a three-
level Natural Network of Terms Hierarchy [0], [12].

Hierarchies of Terms on the Euromaidan Events 131

Fig. 3. Relations construction in a three-level hierarchy

3.3 Visualization of Network of Natural Term Hierarchy

We select top-20 Euromaidan terms (unigrams, bigrams and trigrams) with the
largest CHVG weights to visualize the network we build. These terms are presented
in Table 1.

Table 1. Top-20 Euromaidan terms with the largest CHVG weights

Unigram Bigram Trigram

Украина /Ukraine/ Виктор Янукович /Viktor
Yanukovych/

президент Виктор Янукович
/President Viktor Yanukovych/

Киев /Kiev/ центр Киева /Centre of Kiev/
сотрудники правоохранительных
органов / law enforcement officials
/

власть /Power/ верховная Рада /Verkhovna Rada/
введение чрезвычайного
положения /Introduction of state of
emergency/

страна /State/ улица Грушевского /Grushevskogo
Street/

батькивщина Арсений Яценюк
/Batkivshina Arseniy Yatsenyuk/

Янукович
/Yanukovych/

президент Украины /President of
Ukraine/

Олимпийские игры Сочи
/Olympic Games Sochi/

Майдан /Maidan/ Майдан Независимости /Maidan Ne-
zavisimosti (Independence Square) /

Глава Администрации
Президента /Head of presidential
administration/

люди /People/ партия регионов /The party of regions/ фракция партии регионов /The
party of regions fraction/

милиция /Police/ пресс-служба /Press centre/ штаб национального
сопротивления /National resistance

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza, S. Volskaya 132

Unigram Bigram Trigram
headquarters/

Беркут /Berkut/ Арсений Яценюк /Arseniy Yatsenyuk/ действие благодати Пресвятой
/Holy Grace effect/

оппозиция
/Opposition/

Михайловская Площадь
/Mikhailovskaya Square/

Майдан Незалежности Киев
/Maidan Nezalezhnosti Kiev /

президент
/President/

лидеры оппозиции /Opposition lead-
ers/

страницы социальных сетей
/Social network pages/

Яценюк / Yat-
senyuk/

разгон Евромайдана /Euromaidan
dispersal/

УДАР Виталий Кличко /UDAR
Vitali Klitschko/

украинский
/Ukrainian/

объявление перемирия /Armistice
announcement/

Германия Франция
Великобритания /Germany France
UK/

Евромайдан
/Euromaidan/ Виталий Кличко /Vitali Klitschko/ улица Грушевского Киев

/Grushevskogo Street Kiev/

штурм /Attack/ Майдан Незалежности /Maidan
Nezalezhnosti /

офис партии регионов /Office of
the party of regions/

акция /Act/ акция протеста /Act of protest/ михайловская площадь киев
/Mikhailovskaya Square Kiev/

здание /Building/ правый сектор /Right Sector/ силовой разгон евромайдана
/Military dispersal of Euromaidan/

активист /Activist/ огнестрельное оружие /Firearms/ беркут внутренние войска /Berkut
the internal troops/

МВД /Ministry of
Internal Affairs/

правоохранительные органы /Law
machinery/

премьер николай азаров /Premiere
Mykola Azarov/

площадь /Square/ штурм зачистка /Attack cleanup/ мирная акция протеста /Peaceful
protest act/

улица /Street/ штурм майдана /Attack of Maidan/ здание верховной рады
/Verkhovna Rada building/

Грушевского
/Grushevskogo/

внутренние войска /The internal
troops/

законная власть Украины
/Ukraine’s legitimate government/

лидер /Leader/ применение силы /Use of force/ лидер партии УДАР /Leader of
UDAR party/

Finally when the terms hierarchy network is constructed, we visualize it using

Gephi tool (https://gephi.org). To load the network into a database we represent it by
an incidence matrix in “.csv” format.

4 Results

To illustrate the final network we present a small fragment of 20 terms (20+20+20
in total) in Fig. 4.

It can be noticed that the words in large print (Киев / Kiev, президент / president,
Майдан / Maidan) in Fig. 4 are the topmost terms from Table 1. These words repre-
sent the nodes with the highest weights. Unigram nodes are connected with bigram
and trigram nodes, and bigram nodes are connected with trigram ones. Arc thickness
is proportional to the joint frequency of the terms (i.e., n-grams) it unites.

Hierarchies of Terms on the Euromaidan Events 133

Fig. 4. Euromaidan Natural Network of Terms Hierarchy example (20+20+20)

We should also consider a larger Euromaidan network fragment (200+200+200),

which is presented in Fig. 5. In Fig. 5 it can be seen that in spite of the large density of
this fragment the terms “Киев” / Kiev and “Майдан” / Maidan remain in large print.
Meanwhile the unigram “Президент” / President is replaced by the term “Беркут” /
Berkut. It can be explained by the fact that the unigram “Беркут” / Berkut has higher
weight than “Президент” / President.

After experimenting with networks of different sizes we deduced that node degree
distribution (for outgoing links only) follows power law (()p k Ckα=). It means that
such networks are scale-free (see Fig. 4). Power coefficient α varies from 2.1 to 2.3
for networks of different sizes (e.g., from 20+20+20 to 500+500+500) that in general
complies with Language Networks structure [0].

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza, S. Volskaya 134

Fig. 5. Larger network fragment (200+200+200) visualized using Gephi

It also turned out that according to the proposed algorithm one node can have 5 in-
going links at most (for the network in our example, see Fig. 4). Single words (uni-
grams) have 0 ingoing links, bigrams – 2 ingoing links at most and trigrams – 5 ingo-
ing links at most (with 3 links inherited from each word of a trigram and other 2 in-
herited from the two bigrams a trigram consists of). Top-20 nodes with the largest
ingoing degrees for the 200+200+200 network of natural terms hierarchy are pre-
sented in Table 2.

Table 2. Top-20 nodes with the largest ingoing degree

Outgoing
degree

Node

5 участники акции протеста /Protest act participants/
5 улица Грушевского Киев /Grushevskogo Street Kiev/
5 (президент) Украины Виктор Янукович /(President of) Ukraine Viktor

Yanukovych/
5 силовой разгон Евромайдана /Military dispersal of Euromaidan/
5 мирная акция протеста /Peaceful protest act/
5 глава администрации президента /Head of presidential administration/
5 фракция партии регионов /The party of regions fraction/
5 бойцы спецподразделения Беркут /Berkut special units/
5 Батькивщина Арсений Яценюк /Batkivshina Arseniy Yatsenyuk/
4 администрация президента Украины /Ukrainian Presidential administration/
4 здание Верховной Рады /Verkhovna Rada building/
4 здания центра Киева /Buildings of the centre of Kiev/
4 Верховная Рада Украины /Verkhovna Rada of Ukraine/
4 УДАР Виталий Кличко /UDAR Vitali Klitschko/
4 сотрудники спецподразделения Беркут /Berkut officers/
4 сотрудники правоохранительных органов /Law machinery officers/
4 силовой разгон митингующих /Military dispersal of meeting participants/
4 политический кризис Украина /Political crisis Ukraine/
4 применение силы сторонами /Use of force by the parties/
4 пресс-служба МВД /Press centre of Ministry of Internal Affairs/

Hierarchies of Terms on the Euromaidan Events 135

The nodes with the largest ingoing degree are also semantically the most important
ones. They include the following word combinations: “участники акции протеста”
/Protest act participants/; “улица Грушевского Киев” /Grushevskogo Street Kiev/;
“силовой разгон Евромайдана” /Military dispersal of Euromaidan/; “мирная акция
протеста” /Peaceful protest act/; “бойцы спецподразделения Беркут” /Berkut spe-
cial units/.

CHVG values are calculated for single subjects as well, and the network is con-
structed for them. In Fig. 6 three network examples are shown. Their interrelation
network is given in Fig. 7.

Our assumptions regarding the importance of the selected events for network con-
structing were confirmed during the experiments with informants. Each informant
was given a standard instruction: “Remember the recent events in the world. Write
down 10-15 words which are best to describe these events”. More than 40 informants
were questioned [11].

In Table 3 the results of the experiments with informants are shown. In spite of the
fact that the informants were not asked to describe the events in Ukraine, the majority
of them still speak about the Euromaidan events.

Table 3. Significance of the selected events (results of public opinion poll)

% Events. Informants under 30 ages % Events. Informants of 30 ages and older

39 The joining of Crimea to the Rus-
sian Federation

24 Disturbances in Maidan
58 Winter Olympic Games in Sochi (Russia), the

joining of Crimea to the Russian Federation

18 Olympic Games in Sochi 40 Disturbances in Maidan
33 Referendum in Crime

23 Excellent results of the Russian team in Winter
Olympic Games 14

Excellent results of the Russian
team in the Winter Olympic Games,
Referendum in Crimea, Sanctions
against Russia, Civil war in Ukraine 20 Civil war in Ukraine, Sanctions against Russia

12 Murders of civilian residents in
Ukraine 13 Murders of civilian residents in Ukraine, War in

the East of Ukraine

8
Beginning of combat operations in
the Donetsk republic, Escape of
Yanukovich from the country

8

Escape of Yanukovich from the country, Begin-
ning of combat operations in the Donets republic,
Revolution in Ukraine, Deceitful propaganda in
Russian media, Little green men in Crimea, Crisis
in Ukraine

It is important to note that all the informants were divided into two groups accord-

ing to their age. People of older age turn out to be quite critical while estimating the
events of Euromaidan. On the other hand, one can find a large number of appraisal
words in the answers of the younger group.

To confirm that the keywords and word combinations which we got as terms dur-
ing the process of network construction are really semantically important for our
theme we conducted another experiment with informants. We asked them to define
the subject which these keywords can be connected with.

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza, S. Volskaya 136

There were 7 informants in total and all of them were sure that these keywords
were extracted from the texts about the events of Euromaidan in Kiev.

Such high level of agreement is caused by the high subject homogeneity of the
corpus which we chose to analyze. In fact, all the texts within the corpus describe the
same event.

In Fig. 7 it is shown that a set of terms corresponds to each subject (a node identi-
fied with a date). The terms which take place on several different dates can be seen in
the central part of the network while those which are more specific appear at the pe-
riphery.

а b

c

Fig. 6. Euromaidan network
(20+20+20) (a – 2013.11.30, b –
2014.01.22, c – 2014.02.19)

Hierarchies of Terms on the Euromaidan Events 137

Central zone does not necessarily include all the terms from all the subjects – it is
enough to include some portion of a subject’s terms, e.g., one half. The more terms
the central zone of a subject includes, the closer its content is to the main events trend,
and the more relevant it is. In our example the “2014.01.22” node is the most relevant
to the general events trend (see Fig. 7).

Fig. 7. Euromaidan terms interrelations for the three chosen dates

We also propose a linguistic criterion of subject relevance: the more terms of a pa-

per are in the central zone of the term interrelation network the more relevant this
subject is to the general events theme. In other words, subject relevance is propor-
tional to the number of its terms in the central zone of the term interrelation network.

5 Conclusion

As a result of the research:
─ an algorithm of constructing a network of natural terms hierarchy based on corpus

analysis is proposed;
─ the algorithm is illustrated with the examples of a Euromaidan-related network;
─ network of natural terms hierarchy appears to be scale-free while considering out-

going links;

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza, S. Volskaya 138

─ programming tools for visualization of a network of natural terms hierarchy are
introduced;

─ the criterion of subject relevance to the event is proposed;
─ the verification of this criterion according to the informants opinion is proposed.

Language network, constructed according to the proposed method, can be used as
1) a basis for ontology construction (e.g., for Ukrainian acts of protest theme), 2) a
tool for database navigation and 3) a tool for organizing user prompts in information
retrieval systems.

Our future work includes constructing networks on the base of a less homogeneous
corpus. We are already working on the improvement of the estimation of our results,
involving more informants with more complex stratification (country, region, profes-
sion and so on).

Acknowledgments

The authors acknowledge Saint-Petersburg State University for a research grant

30.38.305.2014. Special thanks to Vlad Kotov for sharing materials with informants.

References

Bolshakova, E.I., Klyshinsky, E.S., Lande, D.V., Noskov, A.A., Peskova, O.V.,
Yagunova, E.V. (2011) Avtomaticheskaya Obrabotka Tekstov na Estestvennom Yazike i
Kompuernaya Lingvistikaа. Moscow, MIEM, 272 p. Title in Russian: Автоматическая
обработка текстов на естественном языке и компьютерная лингвистика.

Drymonas, E., Zervanou, K., Petrakis, Euripides G.M. (2010) Unsupervised Onthology
Acquisition from Plain Texts: The OntoGain System. Lecture Notes in Computer Science,
vol. 6177, pp. 277–287.

Lande, D. V., Snarskii, A. A. (2013) Compactified HVG for the Language Network. Pro-
ceedings of the International Conference on Intelligent Information Systems: The Confer-
ence is dedicated to the 50th anniversary of the Institute of Mathematics and Computer
Science, 20–23 Aug. 2013, Chisinau, Moldova: Proceedings IIS / Institute of Mathematics
and Computer Science, pp. 108–113.

Lande, D.V. (2014) Building of Networks of Natural Hierarchies of Terms Based on
Analysis of Texts Corpora. E-preprint viXra 1404.0069.

Lande, D.V., Snarskii, A.A., Yagunova, E.V., Pronoza, E.V. (2013) The Use of Horizontal
Visibility Graphs to Identify the Words that Define the Informational Structure of a Text.
Proceedings of the 12th Mexican International Conference on Artificial Intelligence,
pp. 209–215.

Liu H., Salerno J., Young M. Berlin (eds) (2009) Social Computing and Behavioral Mod-
eling. Springer, 280 p.

Luque, В., Lacasa, L., Ballesteros F., Luque, J. (2009) Horizontal Visibility Graphs: Exact
Results for Random Time Series. Phys. Review E, pp. 046103-1– 046103-11.

Hierarchies of Terms on the Euromaidan Events 139

Poon, H., Domingos, P. (2010) Unsupervised Ontology Induction from Text. Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 296–
305.

Wong, W., Liu, W. & Bennamoun, M. (2012) Ontology Learning from Text: A Look back
and into the Future. ACM Computing Surveys, vol. 44 (4), pp. 20:1–20:36.

Yagunova, E., Lande, D. (2012) Dynamic Frequency Features as the Basis for the Struc-
tural Description of Diverse Linguistic Objects. CEUR Workshop Proceedings, vol. 934,
Russian Conference on Digital Libraries, pp. 150–159.

Yagunova, E.V., Krilova, I.V, Makarova, O.E., Pivovarova, L.M. (2014) Snezhnaya
revoluciya v Rossii: znachimie nominacii, sobitiya, ocenki (oceenka sobitiy informantami
i dannie SMI). In: “Mi ne nemi!”: tvorchesvo protestuyshey ulici, Tartu. Title in Russian:
“Снежная революция в России”: значимые номинации, события, оценки (оценка
событий информантами и данные СМИ)

Lande D., Snarskii A., Jagunova E. Network of Natural Hierarchies of Terms of News
Messages on the “Euromaydan” Events. CEUR Workshop Proceedings, vol. 1297, Rus-
sian Conference on Digital Libraries, pp. 55-74 (2014)

Stampato in Italia

presso LegoDigit s.r.l.
via Galileo Galilei, 15/1

38015 Lavis (TN)
luglio 2015

