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Preface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The 12th workshop on Natural Language Processing and Cognitive Science (NLPCS 
2015) is a forum for researchers and practitioners in Natural Language Processing 
(NLP) interested in taking a Cognitive Science perspective and learning from recent 
advances in Cognitive Neuroscience, Cognitive Linguistics and Neurolinguistics. This 
workshop was held on 22-23 September, 2015 in Krakow, hosted by the Department 
of Computational Linguistics, at Jagiellonian University.  
The NLPCS workshops have attracted computer scientist, computa-
tional linguist and cognitive linguist researchers from all over the 
world. In addition to the proceedings the workshops contributed to the 
following two international journal issues and three books: 
 
Special issue of the International Journal of Speech Technology, vol. 
11, issue 3/4, December 2008 
 
Special issue of the International Journal of Speech Technology, vol. 
12, 2/3, September 2009 
 
Gala, N., Rapp, R. & Bel-Enguix, Gemma (Eds.) Language Production, 
Cognition, and the Lexicon, Springer, 2014 
 
Neustein, A. & Markowitz, J.A. (Eds.) Where Humans Meet Machines: 
Innovative Solutions to Knotty Natural Language Problems, Springer 
Verlag, Heidelberg/New York, 2013 
 



 

Sharp, B., Zock, M., Carl & M. Jakobsen, A. L. (Eds.) Human Machine 
Interaction in Translation, Copenhagen Studies in Language, Vol. 41, 
2011 
 
The papers and posters presented at the workshops covered an impres-
sive range of approaches ranging from linguistics, cognitive and com-
puter science study to language processing. They covered a wide vari-
ety of languages including Arabic, Polish, Czech, Bulgarian and Mizo 
languages. 
 
We would like to thank the authors for providing the content of the 
programme. In particular thanks to our invited speaker, Philippe Bla-
che, who has contributed the paper entitled "Hybrid Parsing for Human 
Language Processing". We are grateful to the programme committee 
who worked very hard in reviewing papers and providing helpful feed-
back to the authors. We would like also to thank Jagiellonian Univer-
sity for hosting the workshop and for their help with housing and cater-
ing. Special thanks to Maciej Godny for his help with the administra-
tive support of NLPCS website. Thanks in particular to Stefano Chinel-
lato for his help in publishing the proceedings. 
 
We hope that you will find the proceedings interesting and thought-
provoking and that the workshop will provide you with a valuable op-
portunity to share ideas with other researchers and practitioners from 
institutions around the world.   

 
September 2015 
Co-chairs of the workshop: 
Bernadette Sharp, Staffordshire University, U.K. 
Wiesław Lubaszewski, Jagiellonian University, Poland 
Rodolfo Delmonte, Ca’ Foscari University, Italy 

 



Hybrid Parsing for Human Language Processing1 

Philippe Blache 

Aix-Marseille Université & CNRS, Laboratoire Parole & Langage, Aix-en-Provence, France 
blache@lpl-aix.fr 

Abstract. This paper presents an architecture for human language processing, 
explaining both facilitating and complexification effects. It relies on the hy-
pothesis that the default strategy is shallow parsing and relies on chunks (or 
constructions), considered as basic units. The paper proposes a representation of 
these units in terms of properties. It presents then an algorithm schema, in 
which a hybrid technique, integrating shallow and deep parsing, is described. 

1 Introduction 

A very common observation when studying human language processing is that it is 
an extremely fast process, in spite of the apparent complexity of the task. However, 
this characteristics remains largely unexplained. As an illustration, many studies in 
psycholinguistics have explored parameters that render parsing difficult (see for ex-
ample Gibson, 2000; Grodner et al., 2003). However, very few works tries to identify 
what facilitates processing (Blache, 2011). 

We propose in this position paper a language processing architecture based on the 
idea that the default processing by human is very superficial. We only do in most of 
the cases a simple shallow parsing that is usually enough to understand what we read 
or hear. Our hypothesis more precisely is based on the idea that the processing relies 
on the identification of intermediate groups that are the basic operational units, in-
stead of words. Processing an input consists then basically in identifying these units. 
Moreover, the hypothesis also predicts that the presence of such groups facilitates 
processing. In this paper, we will first give a description of the basic operational units 
in terms of constructions. We propose then a formal approach for their representation 
by means of properties, starting from which constructions can be recognized. The 
shallow parsing technique is then described, before presenting the general processing 
architecture.  

 

                                                           
1 Research supported by grants ANR-11-LABX-0036 (BLRI) and ANR-11-IDEX-0001-02 
(A*MIDEX) 
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2 The operational level: chunks, constructions 

Classical architecture of human language processing relies on the hypothesis of on 
an incremental word-by-word integration. However, several observations militate in 
favour of the existence of intermediate operational units. We present in this section a 
brief overview of the notions of chunks and constructions, that can play such a role. 

2.1 Chunks  

Chunks are broadly used in natural language processing (Abney, 1991; Bird, 2009) as 
well as psycholinguistics (Anderson, 2003). Chunks are especially relevant in design-
ing shallow parsing mechanisms, used for different language processing tasks. They 
are defined as group of words or categories that are identified by means of local and 
low-level properties. It is a non-recursive structure, gathering the words that are 
tightly connected and adjacent. Classically, chunks are recognized starting from their 
boundaries: left corner (thanks to the intrinsic properties of certain categories such as 
the determiner or the preposition) or right bound (thanks to the transition between two 
adjacent categories). This boundary recognition is done very efficiently by means of 
probabilistic techniques: n-grams directly model such transition properties. Chunks 
can also be identified on linguistic basis as set of words with a strong syntactic rela-
tion (for example between a specifier and a head). Such symbolic definition of chunks 
has been used for example in the context of parsing evaluation (Paroubek et al., 
2008), in which chunks has been defined in terms of syntactic units, gathering the 
main adjacent constituents of the different phrase types.  

In a cognitive perspective, different studies have shown the importance of chunks 
in human language processing. For example, (Krishnamurthy, 2003) suggests that 
words are not the operational unit in language processing when learning a language, 
the real unit being chunks, defined as groups of words that form meaningful units. In 
the same vein, another study has shown using oculometry that chunks are also more 
likely to be basic units when reading (Rauzy et al., 2012). One observation that can be 
done is that the presence of chunk is a facilitator of language processing: chunks are 
read faster than unlinked set of words (Ellis, 2003). In this perspective, several studies 
in neuroscience have identified a functioning based on chunks, treated as lexical units 
(Capelle et al., 2010). 

2.2 Constructions  

The notion of construction in grammar (Fillmore, 1995) relies on a specific form-
function relation coming from the convergence of different properties (lexical, seman-
tic, syntactic, etc.). Constructions are patterns in which the meaning emerges from the 
interaction between the different components, not compositionally (Goldberg, 2009).  
The following examples illustrate different types of constructions:  

1. Covariational Conditional 
The Xer the Yer (e.g. “The more you watch the less you know”) 
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2. Ditransitive 
Subj V Obj1 Obj2 (e.g. “She gave him a kiss”) 

3. Idioms 
e.g. “kick the bucket” 

In construction-based approaches, language (or more precisely speakers’ knowl-
edge of language) is based on collections of such form-function pairings. An impor-
tant question in the perspective of language processing is to understand how construc-
tions are recognized. When taking the case of idioms in which meaning is completely 
non-compositional, psycholinguists propose two different solutions. One is the “Lexi-
cal Representation Hypothesis” (Bobrow et al., 1973). In this case, idioms are stored 
with normal words in memory. They are processed both literally and figuratively 
simultaneously, but the figurative meaning is accessed first. However, this explana-
tion does not account for idiom flexibility: many of them can be transformed to some 
extent and still be recognized and understood as idioms. It does not also explain the 
fact that idioms are processed more rapidly than literal expressions.  

In other approaches, idiom processing, instead of being lexical, relies on “normal” 
language processing. This is the case of the “Configurational Hypothesis” (Cacciari et 
al., 1988) in which a sufficient portion of an idiomatic expression must be processed 
literally before the idiom can be identified. After reaching this recognition point, the 
rest of the idiom is not processed literally anymore. It has been shown in particular 
that the brain activity differs before and after the idiom recognition point: one event-
related potential, called N400, shows a lower negativity (Vespignani et al., 2009).  

At a more general level, several studies have started to investigate neurological 
evidence of construction role during language processing, stipulating the existence of 
constructional templates in the brain (Pulvermuller et al., 2013). As it is the case with  
chunks (and for the same reasons), the identification of a construction seems to play a 
facilitator role in language processing, which is observed both in time-reading and 
brain activity.  

3 Representing linguistic properties 

Classical incremental approaches do not integrate easily constructions into a gen-
eral processing architecture. The first problem is that we have to involve into a unique 
mechanism different types of objects (words, categories, constructions). Moreover, 
the recognition of a construction relies on the accumulation of different properties, 
and sources of information.  

We propose in our approach an important shift: instead of building compositionally 
a semantic representation starting from the different linguistic domains (especially 
syntax), we propose to start by gathering all possible information, and then trying to 
see how they can lead to an interpretation. Understanding a sentence (or a message) 
does not consist in building a structure (for example a formula), but in identifying the 
level of information available for the interpretation. We propose for this to represent 
separately all the different types of information, also called properties (Blache, 2000), 
whatever their level (relations between features, categories, chunks, etc.) or their 
domain (morphology, syntax, semantics, etc.). These properties connect the different 
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words of a sentence when processing an input. In this approach, instead of building a 
structure, the processing mechanism consists in describing the input by identifying the 
different properties. 

Starting form syntax and semantics, here is a list of possible properties that can be 
directly represented as relations between words: 

• Linearity: linear order that exists between two words  
• Co-occurrence: mandatory co-occurrence between two words  
• Exclusion; impossible co-occurrence between two words  
• Uniqueness: impossible repetition of a same category 
• Dependency: syntactic-semantic dependency between two words. Different 

types of dependencies are encoded: complement, subject, modification, 
specification, etc. 

A grammar is a set of all the possible relations between categories, describing the 
different constructions. In terms of operational semantics, the interpretation is 
straightforward. Given a sentence S, evaluating a property of the grammar consists in 
verifying whether the relations between two categories corresponding to words of S 
are true. For example, linearity consists in checking the linear order between the cate-
gories of the corresponding words in the sentence to be parsed. As another example, 
uniqueness verifies that a same category, within a set of categories corresponding to a 
subset of words in a sentence, is not repeated. 

 
The following figure shows an example in which the different properties are repre-

sented by labelled edges2 between words: 

 
Fig. 1. Graph of properties describing a sentence 

As can be seen in this graph, some subsets of words are more connected between 
each other. The idea is that this density represents a higher level of information, cor-
responding to constructions3. A construction being a subset of words of the sentence, 
the set of constructions forms a partition of the sentence.  

A property is a relation of a certain type, that can be unary or binary. Moreover, 
such relation can be more or less imperative, corresponding to the distinction between 
hard and soft constraints (Keller, 2010). This information is implemented in terms of 
weights (in the following examples, we use H+, H and S values, distinguishing be-
tween hard and soft properties). At this stage, a property is a tuple of the form: 

<id, relation-type, source_node, target_node, weight> 

The following example illustrates the case where some relations are of particularly 
high weight. This is typically the case of idiomatic construction: after the recognition 

                                                           
2 Edges are labelled with the type of the property (co-occurrence, linearity, dependency, etc.) 
3 In this representation, all connected subgraphs correspond to syntactic constructions. 
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point, the co-occurrence as well as linearity relations become imperative constraints. 
They are represented in the graph with a double arrow: 

 
Fig. 2. Constraint graph for an idiomatic construction 

 
All properties are represented independently from each other. However, as de-

scribed in the previous section, constructions correspond to set of properties that in-
teract together. It is then necessary to represent such links between properties describ-
ing the same construction. At the difference with constituency-based approaches in 
which a construction is described in terms of sets, our approach consists in specifying 
directly the links between the properties. We propose to add to the representation of 
the properties this interconnection information by adding a new argument encoding 
the properties linked to the current as follows: 

 <id, type, source, node, weight, linked_props> 

The linked_props argument is a set of indexes, pointing towards other relations 
describing the same construction. For example, the dependency relation between a 
preposition and a noun depends on the linearity: if Prep<N, then Prep is the head and 
N depends on it. Reciprocally, when N<Prep, the Prep depends on N. These relations 
between properties are represented as follows 

 
<1, lin, Prep, N, H, {}> <2, comp, N, Prep, L, {1}> 
<3, lin, N, Prep, H, {}> <3, mod, Prep, N, L, {3}> 

 
The example of the ditransitive construction can be implemented in the same man-

ner, specifying different dependency types according to the form (the first noun is the 
indirect object, the second the direct): 

 
<1, lin, V[dit], N1, H, {}> <4, iobj, N1, V, H, {1,2,3}> 
<2, lin, V[dit], N2, H, {}> <5, obj, N2, V, H, {1,2,3}> 
<3, lin, N1, N2, H, {}>  

 
In this example, the properties implementing the dependency relations are linked to 

the three first properties with the corresponding indexes.  

4 Two types of parsing with properties 

4.1 Shallow vs. Deep Parsing  

A property can be evaluated by a function returning its truth value. Two types of 
properties can be distinguished according to the way they are evaluated (Blache & 
Dahl, 2004): 
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• Success-monotonic properties:  when a relation between two categories 
holds, it remains true when parsing the rest of the sentence. For example, the 
linearity between most and interesting in Fig. 1 holds a soon as it can be ev-
aluated, and remains true until the end. In a more formal manner, the linear-
ity relation a<b is true in the sequence of words s=[γ, a, b, η], whatever the 
composition of γ���� η.�Two types of properties are success-monotonic: 
linearity and co-occurrence.  

• Success-non monotonic properties: A property can be true locally and false 
at a larger span: the evaluation of a property depends on the set of categories 
taken into account. For example an exclusion relation between he words a 
and d is true within the set of words s1={a, b, c}, but false when adding a 
new category d to this sequence s2={a, b, c, d}. In this case, it is then neces-
sary to choose a partition into which evaluating the constraint. 

 
We propose to distinguish two kinds of parsing based on a distinction between 

shallow and deep parsing. Moreover, we want this distinction to be cognitively 
grounded in terms of memory load: shallow parsing does not require much resource, 
contrarily to deep. The above distinction of monotonicity makes it possible to imple-
ment the parsing strategies: 

• Shallow parsing: evaluation of success-monotonic properties. In this case, 
properties can be evaluated independently from the context. There is no am-
biguity, the evaluation is independent from the subset of categories of the 
sentence. 

• Deep parsing: evaluation of all properties, monotonic or not. In this case, it 
is necessary to take into consideration all the possible partitions of the sen-
tence. (i.e. the possible subsets of words of the sentence). In a classical view, 
this comes to explore all the possible solutions. 

The general parsing process consists in evaluating properties when scanning a new 
word in the sentence. This evaluation consists in identifying in the grammar all the 
properties having the word or its category as a target.  

In the case of shallow parsing (i.e. evaluation of linearity and co-occurrence), all 
properties can be directly evaluated (no need of the context). It is interesting to note 
that these two relations are the one that are crucially encoded by n-grams used in a 
probabilistic approach. In this case, a transition probability between two categories is 
higher when strong linearity and co-occurrence relations link them. This characteristic 
will be of certain interest for the specification of the parsing architecture. 

In the case of deep parsing, the mechanism consists in building the different parti-
tions of the set of words from the beginning until the word to be integrated, and then 
evaluating the properties having the current word as target, taking into account the 
subset in which it appears.  

4.2 Inferring Properties  

Our representation of constructions underlines the interaction existing between the 
properties. More precisely, some properties of the constructions are specific in the 
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sense that they depend on the realization of other properties. For example, the gram-
matical role of nominal objects in the ditransitive construction depends on the linear-
ity of the constituents.  We can observe the same kind of relation in most of the con-
struction. In particular, it is very often the case that dependency properties depend on 
the realization of other properties. This also means that some properties can be pre-
dicted from a set of properties already evaluated.  

For example, as seen above, the dependency relation between a prepositional and a 
nominal construction depends on the linearity between them. We can then infer their 
dependency relation from the evaluation of linearity. The same type of inference can 
be applied in many other cases. For example it is also possible to infer dependency 
relations from the linearity ones in the ditransitive construction. In such cases, a sub-
set of properties acts as a trigger for targeted ones. 

Moreover, inference can also be applied to modify or precise some features or val-
ues of the properties within a construction. For example, in the case of an idiom, the 
weights of the co-occurrence and linearity relations between the words can be inferred 
after reaching the recognition point. In the same way as for triggering properties, the 
sequence of words until the RP is the trigger of the new weights of the rest of co-
occurrence and linearity relations. 

Inferring new properties or weights is then a direct mechanism, which does not re-
quire any analysis process (then any extra cognitive load). Moreover, the triggering 
properties are in most of the cases directly evaluable (i.e. the success-monotonic). 
This means that such inference can be done even when doing shallow parsing. In a 
cognitive perspective, this means that such information only represent a light load: 
inference simply consists in instantiating new information, completing the existing 
one. We call this mechanism “complemented shallow parsing”. 

5 Hybrid Parsing 

Several works in cognitive psychology use the old hypothesis that working mem-
ory has a capacity of seven units (Miller, 1956). This hypothesis has been often chal-
lenged (in particular, this capacity seems not to be constant), but the idea remains that 
when processing an input, we can store a limited amount of information. Without 
taking position on this debate, our architecture relies on this first idea that a limited 
amount of memory units, called buffers, can be used during parsing. 

Other works in this same domain have shown that the kind of information to be 
bufferized can be complex (Anderson, 2004): several atomic elements can be aggre-
gated and form chunks. Our approach also takes this idea that when possible, atomic 
elements (i.e. words) can be aggregated into chunks. The hypothesis is that these 
chunks (as presented in the first section) can have different forms and constitute a 
facilitator to processing. 
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5.1 Identifying chunks: the notion of cohesion  

The question with this schema is how to identify a chunk. As seen above, a chunk 
is a convergence of a highly cohesive set of words. Such cohesion can be identified 
thanks to the strength of the relations that linked them together. The cohesion can 
come from any domain and then be of different types, for example: 

• Lexical selection: in the case of multiword-expressions or frozen idioms, 
there exists a co-occurrence and linearity properties that link the words to-
gether. These properties bear the maximal weight. Moreover, these proper-
ties also makes it possible to directly infer a semantic interpretation, that re-
inforce cohesion of the set. 

• Subcategorization: several constructions are based on a mandatory subcate-
gorization of the complement by the governor. Typically, certain verbs are 
necessarily transitive and can never be constructed in an intransitive manner. 
In this case too, this is represented by linear and co-occurrence properties 
with a heavy weight. 

• Constructions: most of the constructions are the result of the convergence be-
tween a large number of properties. In this case, each property is not neces-
sarily of a heavy weight. The cohesion comes from the density of the prop-
erty network. 

The basic mechanisms when building a chunk consists then in evaluating the cohe-
sion of the set of words, thanks to density and weights. For doing so, we propose a 
simple cohesion function, based on two factors: density and weights, defined as fol-
lows: 

    
cohesion =

prop _ weights∑
words

 

 
In this formula, density is the sum of the property weights divided by the number 

of words. In this approach, both density (number of properties) and weights (relative 
importance of a property) are taken into consideration. 

For any set of words, it becomes then possible to evaluate directly its cohesion. 
The decision whether a set of words forms a chunk or not depends then from the 
choice of a threshold, beyond which the structure is considered to be highly cohesive.  

5.2 The processing schema  

The processing architecture relies on two types of processing that are applied de-
pending on the input. In the general case, we only use complemented shallow parsing 
to identify the possible chunks/constructions. It can be the case that this mechanism 
leads to a complete processing of the sentence and its interpretation. In some situa-
tions, it is not possible to fully integrate all the elements into a unique chunk. In this 
case, we apply then a deep parsing technique, dealing with ambiguity and exploring 
the possible interpretations. 

Concretely, at each step (i.e. at each new item scanned from the input), a comple-
mented shallow parsing is applied to the current sequence of words. This sequence is 
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made of the last chunk under construction (possibly made of a unique word) plus the 
new input word. If the sequence reaches a certain cohesion threshold (see previous 
section), then the input word is aggregated to the current chunk. This mechanism can 
be seen as a shift/reduce processing: when possible, a sequence of words is merged 
into a single unit, applying there a reduce operation. 

It is important to remind that, even when using shallow parsing, new properties can 
be inferred, in particular the dependency ones. In this case, we can start to build at this 
basic level a semantic structure. The semantic aspect is an important parameter com-
ing into play when identifying a chunk. As explained, a chunk is a cohesive set of 
words. This cohesion can be identified in some cases only thanks to syntactic con-
straints such as linearity, exclusion, etc. When a chunk also bears semantic informa-
tion (a dependency structure leading to an interpretation), then it constitutes a con-
struction. In the –extreme- case of idioms, the identification of the chunk as well as its 
interpretation comes directly (not compositionally) after the recognition point. 

The general process consists then in scanning the entire input, trying to reduce as 
much as possible into chunks. In the cognitive architecture, a chunk occupies a unique 
buffer. When a new word cannot be integrated into the current chunk, it is then stored 
into a new buffer. This mechanism is applied until reaching the maximal capacity of 
the working memory (let’s say seven buffers). Reaching this limit means that no re-
duction can be done for the set of words, and no interpretation can be given. In such a 
situation, a deep parsing process is launched, exploring incrementally all the possible 
structures leading to an interpretation. This means to explore different possible solu-
tion, trying to identify the optimal one. 

 
An algorithm schema can be given, presenting the main lines of this hybrid pars-

ing. In this schema, we have a stack of buffers storing words or chunks. What is 
stored is more precisely the property graph associated to the words (i.e. the set of 
words plus their properties). In the following, we note functions in italics with an 
initial capital letter and data structure in lower case. The function Scan returns the 
current word of the input sentence.  

 
Init:  

i=0; j=0; buffer(bj) ← Scan(wi) repeat 
 i++; Scan(wi) 

ci ← bi-1 + wi 
 graph[ci] ← Shallow_parse(ci) 
 if Cohesion(graph[ci]) > threshold 
 then buffer(bj) ← graph[ci]  
 else j++; buffer(bj) ← wi until (j=7 or eos) 
if (j>1) then Deep_parse([b1..bj]) 

  
The schema consists in a loop trying to identify the chunks thanks to shallow pars-

ing. Chunks (ore isolated words when no aggregation is possible) are stored into buff-
ers. When the buffer stack reaches the maximal memory capacity, a deep parsed is 
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launched. This schema makes it possible to identify different situations, correlated 
with different processing difficulty levels: 

 
• Simple processing: the entire input can be reduced into a unique chunk (at 

the end of the process, the buffer stack contains only one buffer with one 
chunk). Accessing to interpretation is done only by means of shallow pars-
ing. 

• Medium difficulty: several chunks can be identified; the final interpretation 
process relies on deep parsing integrating the different chunks. The overall 
process makes use of shallow and deep parsing. 

• Difficult processing: no chunks can be identified. The only process relies on 
deep parsing. 

6 Conclusion 

In this paper, we have explored the idea that the default mechanism in human lan-
guage processing is shallow parsing. In most of the case, starting from very basic 
properties, higher-level information can be inferred, until reaching the possibility to a 
direct access to the meaning of entire subparts of the sentence, without any need of 
complex compositional mechanism. This architecture relies on the existence of inter-
mediate operational units formed by constructions. These elements are form-meaning 
pairings, identified by a convergence of different linguistic properties. Very often, the 
constructions can be recognized starting from basic properties. As soon as a construc-
tion is recognized, the corresponding meaning can be accessed directly. The presence 
of constructions is then an important facilitator effect. 

We have proposed a parsing strategy implementing a hybrid parsing: shallow pars-
ing as default, and deep parsing when no construction can be built. This strategy is in 
line with the cognitive architectures, describing the working memory as a set of buff-
ers. When a construction is recognized, it is stored in a buffer that contains otherwise 
only words). The number of buffer is limited (many approaches evoke the number of 
7 buffers). When the maximum capacity of the memory is reached, then a deep pars-
ing is applied.  

This hybrid processing architecture offer a framework explaining both facilitating 
and complexification effects during language processing. Moreover, the property-
based representation provides the basis of a new shallow processing technique, ex-
plaining how new information (in particular meaning) can be accessed directly. 
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Abstract. A study is carried out to evaluate the AMIRA tool which has been used widely 
to pre-process Arabic texts for natural language processing tasks. AMIRA is used in our study 
to tokenise and POS tag our Modern Standard Arabic medical texts. AMIRA includes a 
tokeniser, POS tagger, and a base phrase chunker. The AMIRA tokeniser has achieved 91.22%, 
87.15% and 89.13% for precision, recall and F-measure, respectively, while AMIRA POS 
tagger achieved 84.09% accuracy. The most common errors in the tokeniser outputs were in the 
words where the first letter after the ال (Al) determiner is ل   (L). With respect to the POS 
tagging, AMIRA underperformed in the following categories: broken plurals, adverbs, 
adjectives and genitive nouns.  
 

1 Introduction 

The term “Named Entity”, which was coined for the Sixth Message Understanding 
Conference (Grishman & Sundheim 1996) was initially applied to information 
extraction  tasks aimed at extracting names of person, organisation and locations as 
well as  numeric and percent (e.g. time, date, money) expressions from structured and 
unstructured documents. This task was not only recognised as essential step of 
information extraction but became a focus of study for  many researchers. 

This paper focuses on text tokenisation and part-of-speech tagging (POS), two 
crucial steps in many natural language processing applications and, in particular, in 
named entity recognition. The first task is tokenisation which aims to convert text into 
tokens, where tokens are one or more characters that express an independent linguistic 
meaning, and roughly correspond to words. The tokenisation task is crucial because 
errors made in this phase can propagate into later phases and lead to serious problems. It 
may seem less challenging in the context of some languages, such as English, where a 
single space or punctuation is used to split sentences into words (tokens). However, it is 
very challenging in some languages, like Chinese, Japanese, and Thai, which do not use 
spaces to split sentences into words (Peng et al., 2004).  It is a challenging and non-
trivial task in the Arabic language as word tokens cannot be delimited solely by a blank 
space because Arabic words are often ambiguous in their morphological structure. The 
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aim of the second task is POS tagging which assigns an appropriate POS tag to every 
token in the input data (Voutilainen, 2003).  As Arabic has a very rich and complex 
morphology a word can carry not only inflections but also clitics, such as pronouns, 
conjunctions, and prepositions. A single stem may correspond to thousands of different 
word forms (Habash, 2010; Mohamed & Kübler, 2010). 

The aim of our research is to extract information about symptoms, treatment and 
drugs relevant to cancer from Arabic medical literature.  We have used the AMIRA 
tool developed at Stanford University (Diab, 2009) in our tokenisation and POS tasks. 
This paper discusses the problems and issues encountered in applying AMIRA. 
Section 2 explains the challenges related to tokenisation and POS of Arabic texts. 
Section 3 reviews previous work and section 4 describes the data set, the experimental 
set up and discusses the results. Section 5 presents our final findings. 

2 Challenges of Arabic Language Processing 

Arabic has many traits which, make building an effective tokenising and POS tagging 
tool a very challenging task. Some of these main challenges are described below. 
 

2.1 Agglutination 

The Arabic language has an agglutinative nature and this results in different 
patterns, which can create many lexical variations. It has a very systematic, but 
complicated morphology. This is seen with words that comprise prefixes, a stem or a 
root, and sometimes even more than one, as well as suffixes with different 
combinations. There are also clitics, which in most languages, including English, are 
treated as separate words; however in the Arabic language, they are agglutinated to 
words (Farghaly and Shaalan, 2009). For instance, a phrase in English, such as "and 
they will write it" can be split into five tokens, while in Arabic this is expressed in one 
word  وسيكتبونھا (wsyktbonha). As this example demonstrates,  the conjunction “and” 
and the future marker “will” are represented as prefixes by the letter و and س, 
respectively, while the pronouns “they” and “it” are represented by the suffixes  ون 
and ھا, respectively. Because of the complex morphological structure of the Arabic 
language, the tokenisation process is a difficult and challenging task. 
 

2.2 Short Vowel Absence 

Diacritics can be found in Arabic text, which is a representation of most vowels 
that affect phonetic representation. This lends an alternative meaning to the same 
word. Consequently, disambiguation in the Arabic language is a difficult task because 
it is may be written without diacritics (Alkharashi, 2009). For instance, the word كتب 
without using diacritics could mean the noun “books” or the verb “to write”; 
therefore, determining the appropriate POS tag is difficult in the absence of diacritics. 
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2.3 Rich Morphology 

Arabic has a very rich morphology. As a result, a vast number of words can be 
derived from only one root. For instance, the following words have been derived from 
the root  ك ت ب (k t b): كتب (wrote), كتاب (book), كاتب (writer), كتبة (writers – broken 
plurals), كُتاّب (writers – broken plurals), مكتب (office),مكتبات (offices), مكتبة (bookstore), 
 ,(writers- feminine ) كاتبات ,(writers- masculine) كاتبون  ,(booklet ) كُتيب ,(written) مكتوب
 and so on. Consequently, the tag set can potentially be huge and can ,(Battalion) كتيبة
reach over 330,000 tags for untokenised words (Habash, 2010), an additional 
challenge for Arabic POS tagging.  

3 Previous Research 

The tokenisation process is often discussed as a part of several existing 
morphological analysers, such as the Buckwalter Arabic morphological analyser 
(BAMA), AMIRA (Diab, 2009), MADA+TOKAN, Khoja stemmer and the tri-literal 
root extraction algorithm (Al-Shalabi et al, 2003). BAMA uses pre-stored dictionaries 
of words, stem and affixes constructed manually, as well as truth tables to determine 
their correct combinations (Buckwalter, 2004; (Buckwalter, 2002). BAMA consists of 
three parts: lexicon, compatibility tables, and an analysis engine. All the prefixes, 
suffixes, and stems are gathered in a different lexicon. The task of the compatibility 
table is to determine whether the morphological units (prefix-stem- suffix) are 
permitted to occur all together or not. The analysis engine produces different 
morphological analyses such as POS tag, lemma, and morpheme analyses.  AMIRA 
and MADA, both use a support vector machine (SVM) to perform the tokenisation of 
Arabic words.   The AMIRA tool (Diab, 2009) which was developed at Stanford 
University, includes a tokeniser, POS tagger, and a base phrase chunker. AMIRA uses 
a fixed size window of +/- five letters; all letters tags within the window are used as 
features to feed the SVM algorithm. AMIRA provides the user with a choice of three 
tagging schemes: Bies, ERTS, and ERTS_PER tag sets. In the MADA+TOKAN 
system MADA which is the morphological analyser makes use of orthogonal features 
and a list of potential analyses provided by BAMA to select the most appropriate 
analysis of each word. TOKAN uses morphological generation to recreate the word 
after splitting off its clitics (Habash et al., 2009). In the Khoja stemmer (Khoja, 1999), 
the longest prefix and suffix are removed from the word, and then the remainder of 
the word is matched with the patterns of different nouns and verbs.  The stemmer 
makes use of a list of all diacritic characters, punctuation characters, definite articles, 
and stop words (Larkey & Connell 2001). Al-Shalabi et al. (2003) have developed a 
tri-literal roots extraction algorithm that does not depend on any pre-stored 
information, but assigns mathematical weight to the position of the letters in a word. 
Higher weights are assigned to the letters at the beginning and at the end of the word 
and lower weights to root letters.  

A comparative analysis of the three stemmers, Khoja stemmer, BAMA, and tri-
literal root extraction algorithm, was carried out by Sawalha and Atwell (2008). These 
three systems were applied to two distinct documents: a newspaper and a chapter 
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from the Qur’an, each containing about 1000 words. The three stemming algorithms 
have generated correct analysis for simple roots that do not require detailed analysis. 
The performance is computed using a majority voting procedure in selecting the most 
common root among the list of words and their roots. Their analysis showed about 
62% average accuracy rate for Qur’an text and about 70% average accuracy for 
newspaper text. 

4 Experimental Study with AMIRA  

The accuracy of the stemmers may not be an important issue for information 
retrieval systems but it is vital for named entity recognition applications. Our 
approach to extracting specific named entity from cancer documents consists of four 
main stages: pre-processing, data analysis, feature extraction, and classification 
stages. The pre-processing stage (in dashed line) covers the data tokenisation and POS 
tagging approach, which is the focus of this paper. The resulting tokens and their 
grammatical tags are transferred into a set of features which are then used as inputs 
for the classification phase.  It is proposed to use Bayesian Belief Network to train 
and classify the extracted features which will then become the recognised entities.   
Any errors encountered in the early processing of texts have to be rectified to avoid 
their propagation in subsequent tasks and to produce a reliable training system. Figure 
1 displays our named entity recognition system architecture. 

In order to perform the text tokenisation task, the AMIRA tool was used as it 
accepts raw Arabic texts as input and allows the user to choose between different 
tokenisation schemes.  
 

 

 

 

 

 

 

Fig. 1. The NER system architecture 
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4.1 Data Description 

The data for our study is based on Modern Standard Arabic texts extracted from 
the King Abdullah Bin Abdulaziz Arabic Health Encyclopaedia (KAAHE) website. 
KAAHE was initiated through the collaboration between the King Saud Bin 
Abdulaziz University for Health Sciences and the Saudi Association for Health 
Informatics and further developed by the National Guard Health Affairs the Health on 
the Net Foundation and the World Health Organisation. KAAHE became the official 
health encyclopedia in May 2012 (Saudi E-health Organisation, 2012). KAAHE is a 
reliable health information source, contains abundant information written in an easily 
understandable language appropriate for users from various community groups 
(Alsughayr, 2013).  

4.2 Tokenisation Task 

AMIRA was applied to 26 articles with a total of 5119 tokens. Each article is 
related to a specific type of cancer. AMIRA allows the user to determine the 
tokenisation scheme from the different existing schemes. Different prefixes such as 
conjunctions, future markers and prepositions are selected to be split into parts. The 
Al determiners and suffixes are not tokenised because this increases the ambiguity 
and sparsity of the text, as there are more than 127 suffixes in Arabic (Sawalha and 
Atwell, 2009). Figure 2 displays a sample of the tokenisation result where errors are 
highlighted in grey. 

Fig. 2. A sample of the tokenization task result 

In the above example, AMIRA missed tokenising the words: بالنوع (bAlnwE - type) 
and بالسرطان (bAlsrTAn – by cancer) which starts with the preposition ب (b) and the 
word وھو (whw – and it) which starts with the conjunction و (w). On the other hand, 
AMIRA tokenised the word اللمفية (Allmfyp -lymphatic),which does not need to be 
tokenised, by adding ا (A) letter after the determiner ال (Al) so the wrong result of 
tokenisting this word is الالمفية (AlAlmfyp).  

We evaluated the results of AMIRA’s tokenization result in terms of three 
measures, precision, recall and F-measure using the following equations: 
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The AMIRA tool has achieved 91.22%, 87.15% and 89.13% for precision, recall and 
F-measure, respectively. Two categories of errors are identified: 

• False positive errors that occur when AMIRA tokenises a word that does not 
need to be tokenised.   

• False negative errors that occur when AMIRA misses tokenising word that 
needs to be tokenised. 

One of the most common false positive errors was tokenising words where the 
first letter after the  ال (Al) determiner is  ل (L). Examples of these words are:  اللعابية 
(AllEAbyp - salivary),  اللمفية (Allmfyp - lymphatic),  اللوزتين (Allwztyn - tonsils) and 
 Some of these errors may be related to the limited .(AllwkymyA - leukemia) اللوكيميا 
data set used by AMIRA’s classifier. These errors were corrected manually before 
moving to the next task. AMIRA adds a ا (A) letter after the determiner in these words 
so the wrong results of tokenising these words are الالعابية (AlAlEAbyp),  الالمفية 
(AlAlEAbyp), الالوزتين (AlAlwztyn), and الالوكيميا (AlAlwkymyA). A proposed solution 
for this error is not to tokenise any words that have a double letter ل (L), unless the 
double ل (L) is the first two letters, or to insert a good number of examples of these 
words into the training data if the tokenisation system is using a machine learning 
technique, as with AMIRA. Regarding false negative errors, the main words were 
those that started with the ب (b) preposition. Examples of these words are: بالسرطان 
(bAlsrTAn -by cancer), بحسب (bHsb - according to), بالدھون  (bAldhwn - with fats),  باليود
 (bAlywd - with iodine). It is possible to split the  ب (b) preposition if the following 
letters are the determiner ال (Al). This is because Arabic words which start with بالـ 
(bAl), where the ب  (b) is an original letter of the word, are very uncommon. In order 
to examine how common these words are, the ANERcorp corpus, which consists of 
around 150,000 tokens (Benajiba et al., 2007) was used. Among the ANERcorp, 1104 
words start with بالـ (bAl). However, in only 21 of these is بالـ (bAl) part of the original 
word, and nine words of the 21 words are actually non-Arabic. The rest of the words 
are a repetition of only four Arabic words which are بالغة (bAlghp - exaggerate), بالغ 
(bAlgh - adult), بال (bAl - shabby) and بالي (bAly - shabby). Creating a gazetteer for 
words which start with بـالـ (bAl) when the ب (b) is an original part of the word, would 
assist the tokenisation of such words.  
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4.3 POS Tagging 

AMIRA is also applied to perform POS tagging. Three different tag sets are 
available: Bies tag set, Extended Reduced tag set (ERTS) and Extended Reduced tag 
set + person information (ERTS_PER). The Bies tag set was developed by Ann Bies 
and Dan Bikel and consists of 24 tags. It ignores certain Arabic distinctions, for 
example, it treats the dual form, a common form in Arabic language, as a plural. It 
also can not specify gender in both verbs and nouns. The ERTS tag set has 72 tags 
and provides additional morphological features to the Bies tag set,  and can handle 
number (singular/dual/plural), gender (feminine/masculine) and definiteness (the 
existence of the definite article or not). In addition to the tags in the ERTS tag set, the  

 

Fig. 3. A sample of the POS tagging task result 

ERTS_PER specifies the use of the first, second and third person voice. The 
ERTS, which was selected for the POS tagging task, has many relevant 
morphological features to our corpus while Person information is a less important 
feature as our data only has the third person voice. Figure 3 displays a sample of the 
POS tagging task result. 

In the above example, AMIRA assigned a noun tag to the place adverbs خلف 
(behind) and أمام (in front of). It also assigned an adjective tag to the genitive noun 
 Amira also failed in assigning a plural noun tag NNS to the word .(stomach) المعدة
 We evaluated the results of AMIRA’s POS tagging in terms of the .(factors) عوامل
accuracy. POS tagger accuracy is the number of correctly tagged tokens divided by 
the total number of tokens.  AMIRA achieved an accuracy of 84.09%. However, 
Arabic POS taggers still need more research efforts to improve the accuracy and reach 
a standard equal to Stanford POS tagger for English language which has achieved 
97.3% accuracy (Manning, 2011). The areas where AMIRA performed less than the 
average is explained below.  
 
• Broken plurals 

Arabic has three types of plurals: the broken plural, the sound masculine plural 
and the sound feminine plural. The most used type is the broken (irregular) plural, 
constituting about half of all plurals in Arabic (Habash, 2010). AMIRA has limited 
capability to assign an appropriate POS tag to broken plurals, as 32.02% of AMIRA 
errors are related to broken plural words. For instance, AMIRA assigns a singular 
feminine word tag (DET_NN_FS) to the broken plural words الأوعية (utensils), الأنسجة 
(tissues) and  الأقنية (ducts). It also failed to assign a plural noun tag (NNS) to most of 
the other broken plural words. Examples of these words are الأطباء (doctors), ُسُبل 
(ways) and  خلايا (cells). Broken plurals can be formed using more than 20 
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morphological patterns. Furthermore, an Arabic word might have more than one 
plural. For instance, the word أسد (lion) has five different broken plural forms ( آساد - 
 Therefore, it can be quite difficult to identify a solution for .(أسُْد – أسَدة – أسُد  - أسود 
broken plural POS tagging. We propose to improve the performance of broken plurals 
POS tagging by using machine learning classifier techniques such as neural networks, 
or decision tree. In the literature, Goweder et al (2004) examine different methods in 
order to identify the broken plural. Then concluded that the dictionary and decision 
tree methods achieved the highest results in identifying broken plurals. 
 
• Adverbs 

In Arabic, there are two main types of adverb: those describing time and others 
referring to place or location. AMIRA assigned a noun tag (NN) to most adverbs in 
our corpus. Examples of these adverbs are:  خلف (behind), أسفل (at the bottom of) and 
 We propose to create an adverb gazetteer and use it as a binary feature to .(after) بعد
feed the machine learning classifier. 
 
• Adjective and genitive nouns 

One of the most frequent errors in AMIRA’s POS output is assigning an adjective 
tag (JJ) to genitive nouns ( المضاف إليه ). For instance, AMIRA assigns a JJ tag to the 
word ‘stomach’ in the phrase سرطان المعدة (cancer of the stomach), the word ‘patient’ 
in the phrase فرصة المريضة (the patient’s chance) and the word ‘appetite’ in the phrase 
 There are some grammatical differences between .(loss of appetite) نقصان الشھية
adjectives and genitive nouns, in Arabic grammar. Adjectives and the nouns that they 
modify must agree in number (singular/dual/plural), mood (indicative/subjunctive/ 
genitive) and in indefiniteness and definiteness (presence of the definite article). In 
the above examples, the adjectives and the nouns that they modify disagree in both 
mood and the indefiniteness and definiteness. Using these grammatical differences as 
features in the data training phase will improve the task of differentiation between 
adjectives and genitive nouns. 

5 Conclusion 

Tokenisation and POS tagging are two important tasks used at early stages of 
named entity recognition systems. Whilst these tasks may be seem less challenging 
when processing English texts, many challenges face their implementation for Arabic 
texts because of the complex morphological structure of the Arabic language. This 
paper has described some of these challenges encountered by the use of AMIRA to 
tokenise and POS tag articles related to cancer extracted from the health 
encyclopedia.  The AMIRA tokeniser has achieved 91.22%, 87.15% and 89.13% for 
precision, recall and F-measure, respectively, while AMIRA POS tagger achieved 
84.09% accuracy. The most common errors in the tokeniser output were in the words 
where the first letter after the  ال (Al) determiner is ل (L). With respect to the POS 
tagging, the areas where AMIRA underperformed include broken plurals, adverbs, 
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adjectives and genitive nouns. Some of these errors can be addressed using machine 
learning techniques which will be the subject for future work.  
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Abstract. Traditional experiments on language perception in the human brain 
used tightly controlled sets of stimuli, including short phrases and repetitions of 
words to analyze the effects on neurological recordings. However, critics argue 
that simple language stimuli outside the context of a conversation fail to capture 
the full spectrum of linguistic complexity during natural speech. We present a 
novel experimental strategy to study natural language use in epileptic patients 
undergoing electrocorticography while watching a Hollywood movie that con-
tains many instances of natural interpersonal speech. Detailed analyses were 
created based on the language components available, involving multisensory 
speech and linguistic parsing of human language based on phonology, lexical 
access, semantics, and syntax. This experimental system promotes a more com-
prehensive understanding of the neural implementation of speech by allowing a 
shift from studying language in confined experimental conditions and introduc-
ing innovative approaches to studying the brain’s capacity for understanding 
multimodal and naturalistic language. 
 
 

1 Introduction 

Remember that time you tried to understand a thick foreign accent? You might 
have asked the speaker to repeat the sentence, speak more slowly, or enunciate each 
syllable more clearly. You might have watched the speaker’s lips or looked for ges-
tures. This example illustrates the basic principles of communication: successful 
speech perception encompasses the integration of visual and auditory cues. Auditory 
cues are the more obvious stimuli related to speech, with one prime example being the 
sound of the speaker’s voice. Visual cues consist primarily of the motions of the low-
er face, particularly the movements of the speaker’s lips. While auditory processing 
plays a dominant role in understanding speech, the visual aspect also significantly af-
fects speech comprehension (Ross et al. 2007). The McGurk Effect shows powerful 
evidence of this phenomenon: when the syllable /da/ is heard while the lip movement 
for the syllable [ga] is seen, the syllable /ba/ is perceived (McGurk & MacDonald 
1976). This is done by presenting a video in which the speaker says the syllable [ga] 
accompanied with audio for the syllable /da/. 
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In previous experiments, one variable would be manipulated while everything else 
was held constant. The videos in these experiments often presented the image of just 
the lower face accompanied by the sound of a single word or a syllable. A typical ex-
perimental video would be one in which the speaker’s lower face was shown repeat-
ing the word “house” three times. Although these experiments led to discoveries 
about multisensory integration in the brain, they were not reflective of naturalistic 
speech perception – a typical speech rate elicits up to ten words per second, with each 
word made up of several syllables. Furthermore, these preliminary experiments show 
little progress towards developing a method to monitor free behavior. Monitoring free 
behavior would be the most effective way to collect data since the recordings would 
not be altered due to experimental limitations. However, studying natural behavior in 
a free environment is especially difficult considering the multitudes of inconsistent 
environmental factors that obstruct quality experimental control (Dastjerdi et al. 
2013). 

Newer research has begun to find the specific time and location of neurological in-
tegration (Schepers 2014). Early studies have suggested that audiovisual integration 
occurs as a late phenomenon, taking place after early separate analyses of the auditory 
and visual unimodal signals. However, the most recent studies suggest that there may 
be some early bimodal integration of these speech components. Further supporting 
this claim, a recently published investigation of numerical processing in the parietal 
cortex using electrocorticography and video recording revealed that areas of the brain 
responsive to numerical words in controlled experiments are also responsive in free 
behavior (Dastjerdi et al. 2013). Throughout this project, we endeavored to develop 
methods that can allow us to answer questions such as: Are neural representations of 
speech co-active in controlled experiments and free behavior? Are these experiments 
indicative of social interactions? These types of research questions are novel and can 
only be developed with the use of methodology like the one we describe here. 

Such experiments were made possible by the improvement of brain imaging tech-
nology, such as functional magnetic resonance imaging (fMRI), positron emission 
tomography (PET), and electrocorticography (ECoG). ECoG, also known as intracra-
nial electroencephalography or iEEG, is the most important equipment for our study 
because it provides recordings directly from the brain surface, providing high spatial 
(mm) and temporal (ms) resolution. One defining feature of ECoG is the high signal 
to noise ratio by location of the electrodes that are directly on the cortex the brain. As 
a result, wide frequency ranges are recorded using this method and have shown to be 
more robust relative to less-invasive imaging methods such as fMRI and EEG. 

While recording data from our subjects, high gamma band power was used as an 
indicator of neuronal activity. High gamma waves are within 80-200 hertz, and any 
oscillation that completes a phase in less than one second represents a high gamma 
band. These frequencies correlate and reflect the firing of neuronal populations close 
to the site of recording (UC Berkeley News). Recordings of lower frequency, 1-40 
hertz, demonstrate local field potential and are less spatially selective but can be re-
corded from outside the head. High gamma waves are described in contrast to re-
cordings of lower frequencies to show a tight relationship to increase in frequency and 
lower amplitude (UC Berkeley News). Because high gamma waves are very spatially 
selective, a time-frequency plot can be created to see the hot spots caused by a stimu-
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lus in a specific region of the brain. This is a very reliable way of seeing which ar-
eas of the brain are activated when subject to certain stimuli. 

This project can be seen as an intermediate step between traditional controlled ex-
periments and free behavior monitoring. By using a movie to mimic normal conversa-
tion and a natural environment, we were able to collect data that represented a more 
natural setting while closely monitoring and controlling the testing environment and 
presentation. While the incidents of a natural environment are difficult to predict and 
analyze, the usage of a movie simulator offers the opportunity to be manipulated, pre-
pared, and analyzed ahead of time while containing many aspects of natural environ-
ment, such as conversation, background noises, and music. The movie represents a 
reality we can control. 

2 Methods 

We propose an innovative system for studying the neural correlates of natural lan-
guage processing by presenting and analyzing a complex stimulus set based on an 
auditory-visual movie within the confines of a hospital setting. The movie file has 
been manipulated to allow synchronization with the neural recordings. Post-hoc anal-
yses include, but are not limited to, investigations of auditory-visual speech integra-
tion and basic linguistic properties such as phonemes. 
 
2.1 Movie Selection 

The movie Zoolander, produced by Village Roadshow Pictures and VH1 Films 
and running for 01:29:09 (hh:mm:ss) at 29 frames per second, was utilized as the con-
tinuous auditory-visual stimulus throughout this project. It was formatted as an 
MPEG-4 file. This humorous movie was chosen because of its variety of personali-
ties, diversity of audio, visual, and audiovisual occurrences, and interactions between 
characters. 

 
2.2 Synchronization with Neural Data 

In order to synchronize the movie to the electrocorticography (ECoG; also intrac-
ranial electroencephalography, iEEG) data to allow for temporal alignment of the au-
dio and visual input with the neural output, several photodiodes were embedded 
throughout the film. Photodiodes are white dots accompanied by a short tone. Five 
photodiodes an average of 48.5 milliseconds apart mark the beginning of the movie, 
and ten photodiodes an average of 49.33 milliseconds apart indicate the end. 67 other 
photodiodes are interspersed randomly throughout the movie, appearing approxi-
mately once per minute. The tones that accompany the white dots will be recorded by 
the clinical system. The patient does not hear the tones because the audio is split: the 
right channel plays the audio of the movie and the left channel plays the tones for 
synchronization. These channels are analogous to earphone wires: the patient hears 
sounds from the audio playing from the right “ear” while the audio from the left “ear” 
is connected to the clinical system. The photodiodes are viewed by a sensor which 
sends triggers to the clinical system that also records the iEEG data. 
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2.3 Audiovisual Video Annotation 
The conditions “audio only” and “audiovisual” were naturally occurring through-

out the movie. To simulate the condition “visual only,” three seconds of audio were 
removed from the movie at forty separate instances. The audio sections that were re-
moved were spaced out equally throughout the film and only contained dialogue that 
is not essential to the plot of the movie to avoid obfuscating the higher-level compre-
hension of the movie’s elements, and thereby confusing the patient. 

We annotated the movie to find when each segment occurs in the movie by divid-
ing each instance of speech into one of the three conditions: audio only, visual only, 
and audiovisual.  We were able to do this by utilizing the software ELAN, which al-
lows the user to create annotations of media files in levels of representation, visual-
ized as tiers. The program was created by Max Planck Institute for Psycholinguistics, 
The Language Archive, Nijmegen, The Netherlands. URL: http://tla.mpi.nl/tools/tla-
tools/elan/. The video file together with the audio file was uploaded into ELAN in or-
der to form the annotations. 

 
 

 
 
Fig. 1. ELAN software displays the visual content of the movie (A), the three tiers with indi-
cated segments (B), a spectrogram for sounds and audio content (C), and the alignment of seg-
ments in relation to other tiers (D) 
 

To mark the time segments in each condition, each instance of speech was manu-
ally tagged and organized into one of the tiers. A and AV time segments were marked 
at the start of the auditory signal while V time segments were noted with the onset of 
facial movement. The audio wave file was enlarged to 500% in ELAN for accuracy 
while we were listening to the segments. A new segment was started whenever speech 
paused for longer than two seconds or the speaker changed. The segments were be-
tween 0.084 seconds and 30.027 seconds long (average: 5.928s). Within the tiers 
marked A, V, or AV, individual identities of the speakers were coded and noted as 
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Female A, Male A, Female B, Male B, etc. Throughout the entire movie, there 
were 376 A segments, 47 V segments, and 740 AV segments, each to be synchronized 
to epoch durations in the neural data. 

 
2.4 Linguistic Analysis 

The dialogue of the movie was transcribed by a combination of listening to the 
audio and comparing notes with different sets of subtitles and scripts available online. 
After transcribing the speech of the movie, the appropriate phonemes were found to 
match up with the transcript using an automated process. Phonemes systematically 
represent different sounds in human language. After transcribing the movie, the dia-
logue was separated into their A, V, or AV files to match the annotated segments. The 
movie was divided into three sets of eight roughly even sections, A, V, and AV, to 
keep the file sizes lower, more manageable, and organized. 

FAVE-align, an automatic alignment program made by the University of Pennsyl-
vania Linguistics Lab, was used to align the transcript and phonemes of the segments 
with the audio of the movie. Some words, such as “Zoolander,”not included in the al-
gorithm’s dictionary were added to it with the appropriate accompanying phonemic 
transcription.   

Finding the phonemic spelling for such unrecognized words was possible using 
the same FAVE-align program with the option “Check transcription for unknown 
words.”  The phonemes were generated by the CMU Pronouncing Dictionary 
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict) with the option “show lexical 
stress.”  Fragments, truncated words such as “Zoolan-,” were not recognized by 
FAVE-align either. To resolve this issue, each fragment was given a code (F1, F2, F3, 
etc …) and replaced by its code in the transcript. The code was then entered into the 
dictionary file with its appropriate phoneme translation. The input for this software 
was the TextEdit file for each segment, the .wav file containing its audio, and the 
master dictionary TextEdit file. This returned the output: a TextGrid file indicating 
the start and end times of each word and phoneme organized by character. This result-
ing TextGrid file was used as the input for a MATLAB script. The data concerning 
the phonemes and their time lapses was extracted and represented in a simpler form 
by an Excel spreadsheet. After receiving the TextGrid files, each was manually 
checked to remove words that were misaligned with the audio.  

Praat is a software that displays the audio wave, spectrogram, and TextGrid 
alignment when the TextGrid and its correlating audio file are uploaded. To check if 
the transcript and audio were lined up correctly, we listened to each individual word. 
If a word was incorrect we removed it, replacing the word and its phonemes in the 
TextGrid with “RM.” This reinforced the validity of the FAVE-align algorithm. This 
was done for all components of the movie (audio only, visual only, and audiovisual). 
 In total, there were 1,163 segments. The audio section had 376 segments, the visual 
section had 47, and the audiovisual section had 740. 
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Fig. 2. Praat displays a periodogram for audio content (A), a spectrogram of sound waveforms 
(B), and the alignment of individual phonemes (C), as well as individual words and spaces (D) 

3 Discussion 

Here we present a novel procedure for studying the mechanics of natural language 
processing. We have engineered a solution that allows the presentation of  more natu-
ral speech stimuli to patients with brain electrode implants, their synchronization with 
the neural iEEG recordings, and an in-depth classification of the auditory and visual 
speech stimuli. This will allow future detailed and varied neurophysiological analysis 
of free behavior language processing in the brain. The design and use of such a set-up 
has not yet been reported in scientific literature and represents a step towards under-
standing how the brain processes language outside tightly controlled laboratory condi-
tions. The Society for Neurobiology of Language has recently organized at its annual 
meeting a novel symposium entitled “A Neurobiology of Natural Language Use?’ 
(Society for the Neurobiology of Language)  highlighting the novelty, relevance, and 
interest by the scientific community in studying natural language. While recent meth-
odological developments in brain imaging techniques, such as functional magnetic 
resonance imaging (fMRI), have made the study of natural language more feasible, 
our method is the first to allow the use of powerful electrocorticography recordings 
from brain implants in conscious and performing humans to predict the effects of 
natural speech. The design and specific analysis of the stimulus set presented here, 
together with the high trial count (in the current case, 1163 “trials”) afforded by in-
tracranial brain recordings, enable a neuroscience investigator to ask an almost unlim-
ited number of research questions related to language processing. 

The parsing of the audio and video stimuli into linguistic segments at the sentence, 
word, and phoneme level allows linguists to explore a great deal in regards to, but not 
limited to, auditory-visual speech integration, phoneme-specific localization, lexical 
access, semantics, and syntax.  Careful research and application of the method we 
created can lead to the discovery of specific locations of language processing in the 
brain and more accurate interpretations of neuronal signals than in previous studies. 
Our method could be further refined and modified to study free behavior in a natural 
setting using the principles of neurocinematics. In the seminal study of neurocinemat-
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ics, experimental data indicated that a group of people reacted similarly when 
watching the same movie, and that the movie could “control” the viewers’ neural re-
sponses (Hasson et al. 2008). This idea could be applied to the study of free behavior 
- people’s reactions and changes in brain activity to the same situation could be ob-
served. Current research already indicates that certain brain activity in the superior 
temporal gyrus correlates to the phonetic features of the English language (Mesgarani 
et al. 2014). Clearer understanding of linguistic processes in the human brain could be 
used to create technology that predicts the words being thought. Further developments 
could then be used to advance brain-computer interface technology. This technology 
would be of substantial use and benefit for those with severe motor disabilities. Tech-
nology that can predict a person’s thoughts and translate neuronal signals into move-
ment would revolutionize the creation of Assistive Augmentative Communication de-
vices (AAC). 
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Abstract. There is a large number of classifiers that can be used for generating 
a parse model; i.e., as an oracle for guiding data-driven parsers when parsing 
natural languages. In this paper we present a general and simple approach for 
generating a parse model. Additionally, we present a large number of experi-
ments on various classifiers. We also present the effect of various parse models, 
which are generated from different classifiers, on a data-driven parser to see the 
way each model contributes to parsing performance. 

1 Introduction 

The objective of this study is to present an approach for generating different parse 
models, which are used for guiding parsers during natural language parsing, from 
different machine learning classifiers. There are various classification algorithms that 
can be used for this purpose. However, different classifiers may learn from a set of 
data differently, which means that they may affect parsing performance in different 
ways. In Section 2 we present a data-driven parser that we have used for examining 
the effectiveness of different parse models, which are generated from different classi-
fiers. In Section 3 we show a simple approach for generating a parse model from the 
J48 classifier while in Section 5 we show the accuracy of a large number of classifi-
ers. Section 6 covers the effect of each parse model on parsing performance. Finally, 
in Section 7 we compare our parser with the arc-standard algorithm of MaltParser. 

2 A Data-driven Shift-Reduce Parser 

Our parser is based on the arc-standard algorithm of MaltParser (Kuhlmann and 
Nivre, 2010). This algorithm deterministically generates dependency trees using two 
data-structures: a queue of input words, and a stack of items that have been looked at 
by the parser. Three parse actions are applied to the queue and stack: SHIFT, LEFT-
ARC and RIGHT-ARC (we will write LA and RA for LEFT-ARC and RIGHT-ARC 
respectively to save space). SHIFT moves the head of the queue onto the top of the 
stack, LA makes the head of the queue a parent of the topmost item on the stack and 
pops this item from the stack, and RA makes the topmost item on the stack a parent of 
the head of the queue; RA removes the head of the queue and moves the topmost item 
on the stack back to the queue. MaltParser uses a support vector machine classifier for 
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generating a parse model from a set of parsed trees, which is used for predicting the 
next parse action given the current state of the parser. 

We will call our parser NDParser. At each parse step, we generate a state for LA, 
RA, and SHIFT, and we will assign different scores to each state. For example, a score 
is computed for each newly generated state by computing two different scores: (i) a 
score that is based on the recommendation made by a parse model. For instance, when 
generating a SHIFT state the parser gives a score of 1 if a SHIFT operation is recom-
mended by the model. Otherwise a score of 0 is given (and the same applies to LA and 
RA). (ii) The score of the state that the new state is derived from. The sum of these two 
scores is then assigned to the newly generated state. The advantage of assigning a score 
to a parse state is that we can rank a collection of parse states by using their scores and 
then process the state with the highest score. In order to efficiently process a potentially 
large set of states, we use dynamic programming for ranking competing states with 
respect to their plausibility (the plausibility of a state is based on its score.) The ranked 
states are then stored in a chart table (Kay, 1973) and the most plausible state is ex-
plored by the parser, where new states are generated by using SHIFT, LA, and LR op-
erations. This way we combine features of chart parsing with shift-reduce parsing. 

3 The Generation of a Parse Model 

The effectiveness of a parse model largely depends on the classifier's ability to cor-
rectly classify a Treebank. The Penn Arabic Treebank (Maamouri and Bies, 2004), 
which we converted it to Dependency format, was used for parser training and testing. 
We have experimented with several classifiers that are available in the `WEKA' tool-
kit (Hall et al., 2009) for classifying a set of training data. The output of each classi-
fier is then used for generating a parse model, which is then used for examining the 
effect of each model on parsing performance. The following steps explain a general 
and simple approach for generating a parse model from a dependency Treebank: 

Step 1. Forced parsing: we use a shift-reduce parser for parsing the training data, 
which contains the parsed trees of each sentence. The parsed tree of each sentence are 
used as a grammar to parse the sentence, which is used as a guide to parse the sen-
tence and record parse states during training. 

Step 2. Collecting parse states: during training we obtain a set of parse states, i.e., 
state:action pairs where the condition is the state of the queue and stack (i.e., the items 
on the queue and stack) and the action is the parse operation that the parser performed 
(which is either SHIFT, LA, or RA). Consider, for instance, the parsed tree in Fig. 1 
for the sentence ‘the cat sat on the mat’. 

 
 
 
 
 
 

 
Fig. 1. Dependency tree for the sentence ‘the cat sat on the mat’ 

 sat

cat 
 
the 

On 
 
mat 
 
the 
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Fig. 2 shows the transitions that the parser uses for producing the tree for the sen-
tence ‘the cat sat on the mat'. Note that whilst constructing the training data we will 
not perform any LA or RA operations if a dependency daughter is the head of an item 
that is not inspected yet, as illustrated from step 6 of Fig. 2 where we perform SHIFT 
instead of RA, since performing RA at this point would make it impossible to later 
make on the head of mat because RA would remove on from the queue, which would 
prevent it from becoming the head of mat which is still on the queue. 

 
Dependency relations: (sat>cat) (sat>on) (cat>the) (on>mat) (mat>the) 
------------------------------------------------------------------------------------------------ 
Steps   Action            Queue                 Stack          Arcs 
------------------------------------------------------------------------------------------------ 
1    -           [the,cat,sat,on,the,mat] []          - 
2          SHIFT           [cat,sat,on,the,mat]  [the]           - 
3     LA            [cat,sat,on,the,mat]  []           A1=(cat>the) 
4    SHIFT          [sat,on,the,mat]  [cat]           A1 
5    LA            [sat,on,the,mat]  []           A2=A1+(sat>cat) 
6    SHIFT         [on,the,mat]  [sat]           A2 
7     SHIFT           [the,mat]   [on,sat]           A2 

  
Fig. 2.  Parse states when parsing the sentence ‘the cat sat on the mat’ 

 
We can treat the sequences shown in Fig. 2 as a set of data-points which indicate 

what the parser should do in a given state -- for instance, in a situation like in step 6 in 
Fig. 2 the parser should use SHIFT instead of RA for the reason explained above. 

Given a set of such data-points, it is possible to extract and record the parse states 
and train a classifier for building a parse model, which can be used for predicting 
parse operation; i.e., it can be used for guiding the parser. The task here is to classify 
intermediate states of the parser into three groups: cases where SHIFT should be 
performed, cases where LA should be performed, and cases where RA should be 
performed. 

Step 3. Preparing recorded parse states for classification: from the set of parse 
states that we obtained in step 2, we populate an .arff file with the correct data format, 
i.e., the format that is accepted by WEKA. An example of a set of WEKA-style data 
format is shown in Fig. 3, which is based on the parse states shown in Fig. 2. Here we 
have extracted the word forms as a feature for learning but it is possible to use a num-
ber of different features (such as POS tags, word position etc.) as values for the queue 
and the stack attribute parameters. 

 
@relation states 
@attribute queue_word_pos_1 {‘the’, ‘cat’, ‘sat’, ‘on’, ‘mat’, ‘-’ } 
@attribute queue_word_pos_2 {‘cat’, ‘sat’, ‘on’, ‘the’, ‘mat’, ‘-’} 
@attribute stack_word_pos_1 {‘-’,‘the’, ‘cat’, ‘sat’, ‘on’} 
@attribute stack_word_pos_2 {‘-’, ‘sat’, ‘on’} 
@attribute parse_action {‘SHIFT’, ‘LEFT-ARC’, ‘RIGHT-ARC’} 
@data 
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‘the’, ‘cat’, ‘-’, ‘-’, ‘SHIFT’ 
‘cat’, ‘sat’, ‘the’, ‘-’, ‘LEFT-ARC’ 
‘cat’, ‘sat', ‘-’,‘-’’SHIFT ’ 
‘sat’, ‘on’, ‘cat', ‘-’, ‘LEFT-ARC’ 
  … 

Fig. 3. An example of data for an .arff file 
 
Additionally, one can use many different window sizes for the queue and the stack 

in the data selection as instances for the classification algorithms to learn from. In Fig. 
3. we use a window size of two items for the queue and two items for the stack, while 
the dash mark (‘-’) represents an empty item where the queue or the stack did not 
contain an item in the given position. 

Step 4. Training a classifier using the .arff file: we supply WEKA with the data 
prepared in step 3 (i.e., the .arff file) and then we select a classification algorithm for 
learning. Fig. 4. is an example of the J48 classification algorithm output from WEKA. 

Step 5. Generating a parse model from the classification output: finally, we convert 
the output produced by the classification algorithm to an appropriate state-action 
model, which is used for guiding the parser to parse new sentences. Fig. 5. is a sample 
of some states and actions we have extracted from the J48 (Quinlan, 1992) classifier's 
output. 

 
Satck_word_pos_1 = ?: SHIFT (8430.0) 
Stack_word_pos_1 = ABBREV 
|      queue_word_pos_1 = ABBREV 
|       |      queue_word_pos_2 = ?: RIGHT-ARC (6.0) 
|       |       queue_word_pos_2 = ABBREV 
|       |        |      queue_word_pos_3 = ?: RIGHT-ARC (5.0) 
|       |        |      queue_word_pos_3 = ABBREV: RIGHT-ARC (2.0) 
… 

Fig. 4. An example of the J48 algorithm output using WEKA 
 

states( 
QUEUE, 
STACK, [ 
word_pos(STACK, 1, ‘-’), ‘SHIFT’, 
word_pos(STACK, 1, ‘ABBREV’), [ 
word_pos(QUEUE, 1, ‘ABBREV’), [ 
word_pos(QUEUE, 2, ‘-’), ‘RIGHT-ARC’, 
… ] ] ] ] ] ). 

 
Fig. 5. An example of a state-action model 

 



The Selection of Classifiers for a Data-driven Parser 43 

4 Label Assignment to Dependency Relations 

In this section we show the way we assign labels to dependency relations, which is 
largely different from the way this is implemented in the standard implementation of 
MaltParser. As in the arc-standard algorithm, for each dependency relation between 
two words, a label is attached to indicate the grammatical function of the daughter 
item with its parent. However, the way we assign labels to dependency relations dur-
ing parsing is that we extract patterns from the training data during the training phase. 
This contrasts with the approach used in MaltParser whereby labels are predicted with 
the LA and RA actions of the parser which are learned during the training phase. 

Each pattern consists of a dependency parent, a list of n part-of-speech (POS) 
tagged items, a dependency daughter, a label, and the frequency of the pattern in the 
training data. A schema of a pattern is shown in Fig. 6. The first element of the pat-
tern is a parent item, the second is a list of up to n POS tagged items between a parent 
item and its daughter in the original text, the third is the daughter of a parent item, the 
fourth element is the label for the dependency relation and the last element is the 
frequency of the pattern recorded during training. Fig. 6. shows the pattern when 
PARENT is assigned as the parent of DAUGHTER where there are up to n POS 
tagged items between them then their dependency label is LABEL, and the last ele-
ment indicates that the pattern occurred j times during training. 

 
PARENT, [POS1,...,POSn], DAUGHTER, LABEL, j 

 
Fig. 6. A schema of a pattern for a label 

 
During the evaluation phrase, we show three different parsing accuracy measures, 

those are: (i) Labelled Attachment Scores (LAS), which is the percentage of the cor-
rect dependency relations with the correct labels of the dependency relations 
(DEPREL) between tokens; (ii) Unlabelled Attachment Score (UAS), which is the 
percentage of correct dependency relation (i.e., the percentage of tokens with correct 
heads) regardless of the DEPREL; and (iii) Labelled Scores (LS) which is the per-
centage of tokens with the correct dependency label. 

5 Evaluating Different Classifiers 

Table 1 contains the accuracy of various classifiers that were used for classifying 
the training data that we have mentioned in Step 2 of Section 3. We consider a classi-
fier appropriate for producing a parse model if it meets two requirements: (i) it pro-
duces good classification accuracy. Although the accuracy of the classifiers that are 
presented in Table 1 may not directly reflect the accuracy of a parser that uses its 
recommendations but, a classifier that produces a high level of accuracy is more 
likely to assist a parser to make more informed parse decisions at each parse step than 
a classifier that produces a low level of accuracy; and (ii) its output can be used for 
generating a parse model which can be used for making recommendations to a data-
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driven parser, for example, what action (SHIFT, LA, or RA) the parser should take in 
a specific situation. We have used various features for training different classification 
algorithms. These features included POS tags, word forms, word locations in sen-
tences, their spans (i.e., their start and end positions in sentences). Additionally, we 
have used a combination of these features such as word forms with POS tags, word 
forms with word location or word spans, and similar combination of POS tags with 
other features. Also, various window sizes are used for the queue and stack, ranging 
between two items to four items. The use of these features for training each classifier 
along with the classification accuracy is presented in Table 1. Previous experiments 
by Jaf and Ramsay (2013) indicated that using a window size of more than four items 
on the queue or stack did not yield better results, hence we have used up to four items 
in this experiment. 

 
Table 1. Classification accuracy with various feature and setting. W  = Word, Loc = 
Item location in sentence, POS = part-of-speech tags, and  Span = start and end posi-
tion of a word 

 
J48 

Items on Queue 2 3 3 3 4 4 4 
Items on Stack 4 2 3 4 2 3 4 
W (%) 68.24 68.29 68.37 68.53 68.56 68.67 68.81 
W + Loc (%) 71.92 72.23 71.88 71.67 72.41 72.11 71.80 
W + Loc + span (%) 71.73 72.76 72.25 72.00 72.87 72.45 72.17 
W + span (%) 70.17 70.81 70.64 70.43 70.83 70.79 70.56 
POS (%) 84.94 85.63 85.77 85.80 85.89 86.05 86.04 
POS + Loc (%) 85.27 85.89 85.91 85.92 86.96 86.08 86.09 
POS + Loc + span (%) 85.23 85.81 85.84 85.92 85.95 85.97 85.99 
POS + span (%) 85.00 85.71 85.69 85.67 85.88 85.88 85.88 
W + POS (%) 85.28 86.23 86.24 86.24 86.46 86.47 86.39 
W + POS + Loc (%) 85.83 86.57 86.53 86.45 86.63 86.57 86.54 
W + POS + Loc + span (%) 85.83 86.48 86.54 86.47 86.49 86.55 86.44 
Word + POS + span (%) 85.79 86.50 86.45 86.43 86.53 86.49 86.36 

LiBSVM 
Items on Queue 2 3 3 3 4 4 4 
Items on Stack 4 2 3 4 2 3 4 
W (%) - - - - - - - 
W + Loc(%) - - - - - - - 
W + Loc + span (%) - - - - - - - 
W + span (%) - - - - - - - 
POS (%) 74.62 75.41 75.43 75.39 75.62 75.63 75.55 
POS + Loc (%) - - - - - - - 
POS + Loc + span (%) - - - - - - - 
POS + span (%) - - - - - - - 
W + POS (%) - - - - - - - 
W + POS + Loc (%) - - - - - - - 
W + POS + Loc + span (%) - - - - - - - 
W + POS + span (%) - - - - - - - 

Id3 
Items on Queue 2 3 3 3 4 4 4 
Items on Stack 4 2 3 4 2 3 4 
W (%) 67.65 67.94 67.77 67.68 67.97 67.79 67.62 
W + Loc (%) 62.37 65.22 63.04 61.89 64.41 62.55 61.49 
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W + Loc + span (%) 62.69 64.85 63.18 62.26 64.23 62.79 62.00 
W + span (%) 61.21 63.60 61.84 60.71 62.81 61.25 60.36 
POS (%) 81.64 83.41 81.78 80.54 81.47 79.70 78.81 
POS + Loc (%) 74.57 75.48 75.04 74.95 74.83 74.65 74.61 
POS + Loc + span (%) 74.51 75.42 74.92 74.83 74.85 74.63 74.57 
POS + span (%) 74.28 75.17 74.71 74.59 74.64 74.41 74.33 
W + POS (%) 81.02 82.89 81.29 80.36 81.04 79.67 79.09 
W + POS + Loc (%) 74.96 75.73 75.39 75.33 75.29 75.07 75.04 
W + POS + Loc + span (%) 74.79 75.64 75.22 75.15 75.21 75.00 74.93 
W + POS + span (%) 74.55 75.45 75.04 74.97 75.04 74.81 74.73 

RandomTree 
Items on Queue 2 3 3 3 4 4 4 
Items on Stack 4 2 3 4 2 3 4 
W (%) 68.00 68.27 68.26 68.32 68.47 68.51 68.50 
W + Loc (%) 70.25 70.64 69.35 68.67 70.19 69.36 69.83 
W + Loc + span (%) - 70.27 - - 69.97 - - 
W + span (%) 67.46 68.99 68.25 67.39 68.67 67.79 67.89 
POS (%) 83.71 85.28 84.71 84.26 84.78 84.31 83.69 
POS + Loc (%) 79.18 81.41 80.15 78.84 80.09 78.18 80.12 
POS + Loc + span (%) 76.32 79.41 78.02 76.26 78.79 77.42 76.47 
POS + span (%) 79.19 80.89 78.69 77.78 79.93 77.28 76.95 
W + POS (%) 83.62 85.37 84.34 83.57 84.46 83.33 83.28 
W + POS + Loc (%) 80.10 81.84 80.62 79.17 80.27 79.03 77.99 
W + POS + Loc + span (%) 77.3 79.59 77.50 76.33 78.09 76.77 75.02 
W + POS + span (%) 78.42 80.58 77.87 77.34 78.95 76.87 77.17 

NaiveBayes 
Items on Queue 2 3 3 3 4 4 4 
Items on Stack 4 2 3 4 2 3 4 
W (%) 60.13 65.95 65.48 63.37 65.06 64.68 64.60 
W + Loc (%) 57.02 64.12 57.03 55.68 62.21 54.67 52.74 
W + Loc + span (%) 49.98 47.29 44.51 47.60 45.28 42.79 45.28 
W + span (%) 53.47 55.32 48.75 51.09 52.30 46.46 48.57 
POS (%) 70.42 76.78 76.19 74.02 76.01 75.38 74.17 
POS + Loc (%) 64.05 74.70 71.13 67.13 72.39 70.68 67.1 
POS + Loc + span (%) 58.43 65.72 58.22 57.11 61.27 55.49 54.24 
POS + span (%) 61.15 70.93 65.13 61.31 67.62 63.37 59.63 
W + POS (%) 66.00 74.67 73.66 71.04 72.12 72.21 71.02 
W + POS + Loc (%) 62.25 72.50 69.20 63.57 69.13 67.89 62.70 
W + POS + Loc + span (%) 57.62 64.58 56.72 55.55 59.78 53.95 52.73 
W + POS + span (%) 59.98 69.69 62.84 59.08 65.33 60.50 56.89 
 

During the evaluation of the classifiers, some widely used classifiers did not yield 
encouraging results. For example, the LiBSVM classifier (Chang, 2001) which is 
used in MaltParser did not perform well with the set of features that we have supplied. 
It only managed to learn successfully from one feature (POS tags), while the accuracy 
was well below the accuracy of some of the other classifiers. The entries for LiBSVM 
in Table 1 are incomplete because training takes so long (3 days per case) that future 
experiments seemed infeasible. However, the fact that it produces no better classifica-
tion than the J48 classifier in the cases that we have looked at suggests that it is 
unlikely to substantially outperform it in the remaining cases. 

From the large number of experiments we have conducted on several classifiers, 
we will evaluate NDParser on them in the following section. 
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6 Evaluating NDParser with Various Classifiers 

As presented in Table 2 the classification accuracy varies because each classifier 
learns differently from the set of training data. In this section, we investigate the ef-
fect of different classifiers on parsing. Our objective is to identify the classifiers that 
help the parser perform best in terms of accuracy and speed (We measure speed as the 
number of seconds per dependency relation). These experiments also highlight 
whether different parsing models, which are generated by using different classifiers, 
contribute in different ways to parsing performance. The optimal classification of 
accuracy may not necessarily lead to optimal parsing performance. Hence, it is neces-
sary to investigate the effectiveness of different classifiers parsing performance. 
 
Table 2. Parser evaluation with different classifiers, features and settings. Q = Queue 
size, S = Stack size, POS = part-of-speech tags, RT = RandomTree 

 
Classifier Features Q S UAS (%) LAS(%) LS(%) Spee

dJ48 POS 4 3 74.5 71.0 93.6 0.081 
J48 POS 4 4 74.1 70.5 93.6 0.086 
J48 POS + location 4 2 70.3 67.0 93.3 0.146 
J48 POS + location + span 4 4 69.2 65.9 93.3 0.161 
J48 POS + span 4 2 70.6 67.2 93.3 0.145 
J48 POS + span 4 3 70.8 67.4 93.3 0.150 
J48 POS + span 4 4 70.9 67.5 93.3 0.142 
J48 Words + POS 4 3 71.4 67.9 93.5 0.096 
J48 Words + POS + location 4 2 69.9 66.5 93.4 0.140 
J48 Words + POS + location + span 4 3 68.0 64.8 93.1 0.183 
J48 Words + POS + span 4 2 69.8 66.5 93.3 0.161 

RT POS 3 2 70.9 69.4 93.3 0.141 

RT POS + Location 2 1 68.6 65.5 92.9 0.154 
RT POS + Location + span 2 1 67.8 68.1 92.3 0.181 
RT POS + span 2 1 68.2 65.8 92.3 0.181 
RT Words + POS 2 2 70.0 66.6 92.3 0.196 
RT Words + POS + location 2 1 68.7 65.3 92.4 0.198 
RT Words + POS + location + span 2 1 66.8 63.6 92.1 0.196 
RT Words + POS + span 2 1 68.6 65.3 92.3 0.184 

Id3 POS 3 1 70.6 67.2 93.4 0.083 

Id3 Words + POS 2 2 68.1 64.8 93.3 0.099 

 
From Table 1 we can identify the classification algorithms with the highest degree 

of accuracy. In this section, we trained NDParser using J48, RandomTree, and Id3 
algorithms since they all classified the same set of training data with over 80% accu-
racy. For each of these algorithms we use the same settings that produced the optimal 
accuracy. For example, based on the results in Table 1 we will use the POS tags as a 
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training feature for the J48 algorithm with four items on the queue and three items on 
the stack because with this setting the algorithm produced 86.05% accuracy, while if 
we are using POS tags and their locations in a sentence as training features for J48 
algorithm then we will use four items on the queue and two items on the stack be-
cause the algorithm performs best with this setting, which produced 86.96% accuracy. 

The results of the evaluation of our parser are presented in Table 2. The best pars-
ing performance is achieved when training the parser using the J48 classification 
algorithm on only POS tags as a feature and the window size for the queue and stack 
is four and three items respectively. The experiments in Table 1 show that training a 
classifier using a small set of features produces relatively similar classification accu-
racy to using a larger set of features. However, using a smaller set of features im-
proves the parsing accuracy and speed. 

7 A Comparison with the State-of-the-art Parser 

In this section, we compare our parser with MaltParser, as shown in Table 3 where 
we have conducted a 5-fold cross validation on both parsers. We have trained our 
parser using the J48 classifier with POS tags as features and a window size of four 
items on the queue and three items on the stack. We can note that our parser is 43% 
more efficient than MaltParser. Although the unlabelled attachment score of our 
parser is slightly lower than that of MaltParser (0.7%), the labelled attachment score 
and the labelled accuracy is more accurate than MaltParser by 1% and 1.4% respec-
tively. We believe that this improved accuracy of labelled attachment score and la-
belled score is because our parser have information about intermediate items between 
parent and daughter, which are collected during training (see Section 4 for more de-
tails) where such information is not available to MaltParser. MaltParser learns models 
that contain information about parent and daughter relations and their labels during 
the training phase where the information about the intermediate items between parents 
and daughters that we use is not recorded. 

 
Table 3. Parser performance of MaltParser and NDParser 

 
Parser UAS(%) LAS(%) LS(%) Speed 
MaltParser 75.2 70.0 92.2 0.144 
NDParser 74.5 71.0 93.6 0.081 

 
The results for MaltParser in Table 3 were obtained by training and testing it on the 

dependency trees that we extracted from the PATB. The structure of these trees de-
pends on the head-percolation table that is used during the conversion process. It is 
likely that this underlies the differences between our results for MaltParser and the 
results published by Nivre (2008) (77.76% for UAS, 65.79% for LAS, and 79.30% 
for LS), where Niver’s result for UAS is slightly better than the one we obtained in 
this study, for LAS and LS they are slightly worse. 



S. Jaf, A. Ramsay 48 

8 Conclusions 

In this paper we have presented a simple approach for evaluating and generating 
parse models from various machine learning classifiers. We have shown that generat-
ing a parse model, which is used for guiding data-driven parsers, from different classi-
fiers affects parsing performance in different ways. We have discovered that generat-
ing a parse model using a small set of features and settings improves parsing accuracy 
and speed compared with using large features and settings. We have presented a basic 
shift-reduce parser, which is based on the arc-standard algorithm of MaltParser, and 
we have evaluated our parser with various parse models that were generated from 
different classification algorithms, features and settings.  
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Abstract. Readability of a text is a measure how difficult the text is to 
understand on average. The aim of the present paper is twofold. First, we have 
determined through a psychological experiment and statistical data analysis 
how readability of texts in Polish depends on syntactical and lexical statistics of 
the texts. Second, we have implemented a computer program, called Jasnopis, 
which computes readability of a given text according to the developed formula 
and suggests how to make the text easier to comprehend. 

1 Introduction 

Texts that circulate in public discourse, such as fairy tales, press articles, legal 
acts, or scientific articles, vary with respect to their ease of reading, called readability. 
Some degree of text difficulty stems from an intention of communicating complex 
meanings, but ideally we would expect that the intended ideas were put across as sim-
ply as possible. The reality is far from this ideal state. We are surrounded by more 
and more complex texts, such as legal decisions or medical leaflets, which we are 
supposed to understand. Unfortunately, these important texts are difficult to under-
stand to nonspecialists, for they are written using a specific language register and 
contain very long sentences or highly specialized terms. We think that there is a need 
for a computer application that would help to measure how difficult a given text is to 
comprehend and would suggest possible ways of simplifying it. Consequently, in this 
paper we propose a computational method of predicting readability of texts in Polish. 

                                                           
1 The research reported in this paper has been funded by the NCN grant “Mierzenie stopnia 
zrozumiałości polskich tekstów użytkowych” no. 2011/03/BHS2/05799. 
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A great deal of research concerning readability of texts has been already done for 
English. Since the end of 19th century, researchers in the United States have been 
interested in variation of texts with respect to their ease of understanding (Sherman, 
1893). In the 1920's the interest of readability researchers shifted towards practical 
application such as assessing difficulty of textbooks and adjusting them to progress-
ing abilities of schoolchildren. Hence, various empirical formulas have been proposed 
that allowed to estimate readability of a text given its certain statistics (Lively and 
Pressey, 1923; Washburne and Vogel, 1928; Lewerenz, 1929; Patty and Painter, 
1931). The next decade brought interest in measuring actual understanding by adults 
through psychological tests and using results of the experiments to scale and improve 
readability formulas (Dale and Tyler, 1934; Gray and Leary, 1935). In 1940's, Lorge 
(1944a,b) and Flesh (1948) observed that readability can be predicted surprisingly 
well using only two or three statistics related to syntactical and lexical text complex-
ity, such as the average sentence length (ASL) and the average word length (AWL). 
Let us observe that restricting ourselves to the AWL, we would treat the text as a bag 
of words. In contrast, taking into account the ASL, we indirectly measure also the 
complexity of syntax, which is a desirable property. 

An example of a simple readability predictor is the Flesh formula (Flesh, 1948): 

Text Readability = 206.835 – 1.015 * ASL – 84,6 * AWL, (1) 

where ASL – average sentence length (in words), AWL – average word length (in 
syllables). The readability index given above ranges between 100 (a very simple text) 
and 0 (a very difficult text). Many more similar readability formulas have been advo-
cated by various researchers since then (Dale and Chall, 1948; Gunning, 1952; 
McLauglin, 1969; Caylor et al., 1973; Kincaid et al., 1975). The FOG index by Gun-
ning (1952) became particularly famous. It reads:  

Fog Index = 0.4 * (ASL + PHW), (2) 

where ASL – average sentence length (in words), PHW – percentage of words longer 
than two syllables. Two other popular readability indices are ARI (Senter and Smith, 
1967) and LIX (Bjornsson, 1968). ARI (Automated Readability Index) was proposed 
for English and it reads ARI = – 21.43 + 0.5 * ASL + 4.71 * AWL, where ASL – 
average sentence length (in words), and AWL – average word length (in characters). 
In contrast, LIX (Lasbarhetsindex) was designed for Swedish and it reads LIX = ASL 
+ PHW, where ASL – average sentence length (in words) and PHW – percentage of 
words longer than 6 letters. 

As we can see, each of the proposed readability formulas uses a bit different text 
statistics, with different coefficients, and returns values in a different range. Thus, 
there is a problem of putting readability indices onto a common human-readable 
scale. To overcome this problem, Dale and Chall (1948) proposed to scale readability 
index according to the number of years of education that is needed by the intended 
reader of the text. Another way of putting the readability index onto a common scale 
is to use some standardized and universal psychological test of text understanding and 
to construct the best predictor of this test based on text statistics. In fact, Taylor 
(1953, 1956) developed a method, called the Cloze test, which seems to measure how 
well human subjects understand a given text. The Cloze test consists in asking a per-
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son to complete gaps in a version of the text in which every 5th word has been 
deleted. The Cloze score is the percentage of gaps that have been completed cor-
rectly. It has been confirmed that the Cloze score correlates well with other psycho-
linguistic methods of assessing text readability (Rankin 1959; Bormuth 1966). Using 
the Cloze test, quality of various readability formulas was computed by DuBay 
(2006). For example the Pearson correlation between the Cloze score and the Flesh 
formula (1) is 0.91, the same result was obtained for the Fog index (2) whereas the 
best result, correlation 0.93, was observed for the formula by Dale and Chall (1948). 

It is reasonable to expect that readability formulas should be language dependent 
to a certain extent. The typical length of a sentence or a word clearly depends on a 
language. For this reason, readability formulas, particularly those suggesting the re-
quired level of reader's education, should be tuned to a particular language, such as 
Polish. Until recently, there was not much interest in the readability research for the 
Polish language. This research area started to gain more interest in the last few years, 
e.g., Broda et al. (2010), but the most known readability formula was proposed by 
Pisarek in 1960’s (as reported in Pisarek, 2007): 

Text Difficulty = 

1
2√ASL2+PHW 2

, 

(3) 

where ASL – average sentence length (in words), PHW – percentage of words longer 
than three syllables. In his 2007 paper, Pisarek also published a graphical scale for 
computing readability, which corresponds to a bit different formula, namely 

Text Difficulty = 

ASL
3

+ PHW
3

+1
. 

(4) 

Pisarek has not verified his formulas in a psycholinguistic experiment on human 
subjects. In contrast, we will discuss the results of a larger research project in which: 

1. The Cloze test and an open-ended question test was applied to 35 texts in 
Polish, read by a sample of 1759 persons. 

2. The results of the psycholinguistic experiment were analyzed statistically to 
provide a new readability formula, which is better than Pisarek's formula. 

3. A computer application, called Jasnopis, was written to compute this read-
ability formula for a given text in Polish. Besides estimating readability ac-
cording to our new formula, Jasnopis returns many other text statistics for a 
given text and prompts how to adjust the text to make it more readable. 

The organization of the paper is as follows. In Section 2 we discuss the psycho-
linguistic experiment. Section 3 is devoted to statistical analysis of the data and the 
development of a new readability formula. In Section 4 we describe the Jasnopis pro-
gram. Conclusions are presented in Section 5. 
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2 The psycholinguistic experiment 

The purpose of the psycholinguistic experiment was fourfold: a) to validate Pis-
arek's formula, b) to find text variables that influence text readability but are different 
than ASL and PHW, c) to identify psychological variables that influence text com-
prehension (such as reader's interest in the text), and d) to use the results of the ex-
periment to develop a new readability formula.  

Before conducting the psycholinguistic experiment, we have constructed an a pri-
ori scale of seven classes of growing text difficulty, measured in the number of re-
quired years of education to understand the text correctly. (Class 1 are texts that 
should be understandable by students of elementary schools, whereas class 7 are 
those whose comprehension requires the doctorate level of education.) Subsequently, 
we have compiled a corpus of texts that presumably belong to the respective text dif-
ficulty classes. The texts were chosen by the project members: psycholinguists, lin-
guists and computational linguists. Using the FOG index (2), we have next chosen 5 
most typical texts for each difficulty class. In this way we have obtained a sample of 
35 texts, on which we performed the psycholinguistic experiment.  

 In the experiment, 1759 persons have participated: 63% female and 37% male. 
Participants were of diversified ages (average=35.6, standard deviation=14.65, 
min=15, max=87), education (from elementary to higher), occupation (including 
manual workers, white-collars, unemployed and pensioners), coming from villages 
(20%), smaller towns (28.3%), medium-size cities (28.7%) and big cities (21.7%). 
Each participant of the study received 2 texts to read. Each text was accompanied 
with a set of 5 open-ended questions or the Cloze test. The experiment was performed 
using the traditional pen and paper approach.  

Having collected the survey results, we performed statistical analysis of the data. 
We found out that Pisarek's formula was highly correlated with the results of the 
Cloze test (r=-0.69, p=0.001) and the open-ended questions (r=0.8 p=0.001). More-
over, we found out that the test results are highly correlated not only with the vari-
ables used by Pisarek (for ASL rcloze=-0.63, rquestions=-0.71; for PHW rcloze=-0.67, rques-

tions=-0.83; p=0.001) but also with some other text statistics. Among the top correlated 
variables were: the percentages of nouns, terminology, abstract nouns, foreign words, 
gerunds, verbs, the ratio of nouns to verbs, and the subjective probability of words 
(Imiołczyk, 1987). These results suggest that using these variables we may propose a 
readability formula that outperforms the Pisarek or Fog indices.  

3 A new readability formula 

Given the psycholinguistic survey described in Section 2, we were in position to 
analyze how readability of a text depends on particular text statistics. At our disposal 
we had 35 texts – 5 texts per each of 7 difficulty classes. For each text, we had the 
results of two psycholinguistic tests measuring the text comprehension – the Cloze 
test and the open question test. These were our response variables. Moreover, for 
each text, we have measured 33 lexical and syntactical text statistics, such as ASL, 
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PHW, the percentages of nouns, terminology, abstract nouns, foreign words, 
gerunds, verbs, the ratio of nouns to verbs, and the subjective probability of words. 
These were our explanatory variables. The goal of the consecutive data analysis was 
to find out (i) how the difficulty class of a text could be predicted from the response 
variables and (ii) how the response variables could be predicted from the explanatory 
variables. As a result, we obtained a new formula for text readability which was im-
plemented in the Jasnopis tool, to be discussed in the next Section 4. 

Since there were not so much data, we looked for a linear formula for readability: 

Y i =A0+∑ A j Xij +εi . 
(6) 

where: Yi – a chosen response variable for the i-th text, Xij – j-th explanatory variable 
for the i-th text, εi – random noise, i=1,...,N, N=35 – the number of texts, K=33 – the 
number of explanatory variables. 

The number of texts N=35 is close to the number of explanatory variables K=33. 
In this situation, choosing the coefficients Aj through least squares regression would 
lead to terrible overfitting, that is, formula (6) would not predict comprehension of 
texts different to the training sample. A possible solution to this problem is to use 
least squares regression with regularization, such as Lasso or Ridge regression (Tib-
shirani, 1996; Tikhonov, Arsenin, 1977). The least squares regression with regulari-
zation consists in choosing such coefficients Aj that minimize expression 

∑ [Y i− A0+∑ A j Xij ]2 +β∑ (A j)α , 
(7) 

where α = 1 for the Lasso regression and α = 2 for the Ridge regression, whereas β is 
chosen by cross validation. (For the least squares regression without regularization, 
we minimize expression (7) with β = 0.) 

A priori it was not obvious that the Lasso or Ridge regression would give the best 
results. Therefore we compared these two methods with three other methods: 

1. The baseline model: Text difficulty does not depend on text. That is, we 
minimized expression (7) with β = 0 and Aj being nonzero only for j = 0. 

2. The least squares regression with two explanatory variables, ASL and PHW, 
as in Pisarek's formula (4). That is, we minimized expression (7) with β = 0 
and Aj being nonzero only for j = 0,1,2. 

3. The weighted average (committee) of least squares regressions with three 
explanatory variables: ASL, PHW, and one of the remaining 31 variables. 
That is, first, for each k in range {3,...,K}, we minimized expression (7) with 
β = 0 and Aj being nonzero only for j = 0,1,2,k, and second, we took an av-
erage over k of so obtained Aj. 

The quality of each of these five methods of determining coefficients Aj was as-
sessed by leave-one out cross validation. That is, we removed one text from the train-
ing sample, we fitted the coefficients Aj to the remaining texts, and we checked how 
well the model predicted the response variable for the removed text. The prediction 
error, defined as difference between the prediction and the response variable, was 
recorded for each text. We made a boxplot graph of the prediction error and we chose 
the method for which the prediction error is the smallest in general. 
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We applied this procedure independently to three response variables: the Cloze 
score, the open question score, and a weighted average of these two scores, which we 
will refer to as the weighted readability score. The relative prediction errors for pre-
dicting the Cloze score and the open question score were similar whereas they were 
substantially smaller for the weighted readability score. Therefore we suppose that 
the weighted readability score is a better predictor of the actual text readability than 
the Cloze score or the open question score considered individually. The boxplots of 
the prediction error for the weighted readability score and the five different methods 
of determining coefficients Aj are presented in Fig. 1.  

 
Fig 1. Boxplots of prediction error of the weighted readability score for the five 
methods of determining coefficients Aj described in Section 4 

 
In Fig. 1 we can see that the Ridge regression yields the smallest maximal predic-

tion error. Therefore formula (6) with coefficients Aj given by the Ridge regression 
for the weighted readability score was adopted as a part of a new formula for read-
ability of texts implemented in the Jasnopis tool. The second ingredient of the new 
Jasnopis formula for readability is a projection of the Rigde regression onto the scale 
of 7 difficulty classes, introduced in Section 2, so that the final readability score be 
more human readable. As we can see in Fig. 2, the dependence between the weighted 
readability score and the difficulty class is linear in a good approximation.  

4 The Jasnopis program 

The final aim of our project was to construct a computer application for measuring 
readability of Polish texts. The tool, called Jasnopis, implements the measure of text 
readability given by the Ridge regression, described in the previous section, and addi-
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tionally computes a number of other text statistics, which may be of interest to 
end-users. The prototype web-based application is available at http://jasnopis.pl. Jas-
nopis accepts many different documents types on its input: from a plain text and a 
website URL address to document formats supported by OpenOffice. The first step of 
the document processing by Jasnopis is text extraction, which is a nontrivial problem 
on its own. Next, we perform morphological analysis using Morfeusz (Woliński, 
2006, and part-of-speech tagging using WCRFT (Radziszewski, 2013). In the later 
stages of document processing we use various tools and resources like the frequency 
lists from National Corpus of Polish, NCP (Przepiórkowski et al., 2012), the plWord-
net (Piasecki et al., 2009) or the subjective probability lists of Imiołczyk (1987). 

 
Fig. 2. The dependence between the weighted readability score (Y) and the difficulty 
class (klasa) for 35 texts 

 
The main statistic calculated by Jasnopis is the difficulty class on the 7-point scale, 

described in Section 2. To estimate the difficulty class we rescale the score of the 
Ridge regression via the linear function depicted in Fig. 2. Additionally, Jasnopis 
calculates the following indices: a few variants of the FOG index (2), Pisarek's indi-
ces (3) and (4), an automated Taylor test, similarity graphs and additional text statis-
tics. Both the FOG and Pisarek indices depend on the variable PHW – the percentage 
of words longer than a certain number of syllables (for Polish, three). Since Polish is 
an inflective language, it is not a priori obvious whether when computing PHW one 
has to consider the orthographic forms or the base forms of words. 

In addition to the above variants of the FOG and Pisarek indices we also calculate 
some discounted versions of them, because the original definition of “hard” words in 
PHW is too simplistic: not every long word is a difficult word. Many words that are 
long are so common, that an average person has no difficulty in understanding them. 
Thus, we exclude most frequent words in NCP from PHW calculation. There are 
many words that an average Polish native speaker knows, but which are rarely used 
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in writing. Thus, from the PHW calculation, we also remove words that can be found 
on the subjective probability lists by Imiołczyk (1987). 

Another text statistic implemented in Jasnopis, the automated Taylor test is some-
what inspired by the Cloze test by Taylor (1953, 1956). Instead of using human sub-
jects, we train a few statistical language models and we check which one is the best at 
predicting the text. For simplicity, we use bigram language models (Jurafsky & Mar-
tin, 2008), trained on 5 reference corpora corresponding to different classes of text 
difficulty. Each bigram model assigns a probability of a word wi conditioned on a 
single previous word wi-1 as 

, 

(5) 

where c(wi-1wi) denotes the number of times the bigram wi-1wi occurred in a training 
corpus. In this way we obtain seven bigram models corresponding to the seven 
classes of text difficulty. Then, the difficulty class of a given new text is determined 
as the class of difficulty corresponding to the bigram model with the highest total 
probability (that is, the lowest perplexity).  

Yet another automated score of text difficulty implemented in Jasnopis is also 
based on reference corpora. Namely, instead of building language models we use the 
Vector Space Model (Salton et al., 1975). In this approach the text is represented as 
the n-dimensional vector D=[d1,d2,…,dn], where di are frequencies of words appearing 
in the text. To compare two texts or corpora we use the cosine distance between the 
corresponding vectors. Subsequently, the difficulty class of a given new text is de-
termined as the class of difficulty corresponding to the reference corpus with the 
highest smallest cosine distance. Let us observe that this procedure ignores syntactic 
difficulty of the text since we treat the text as a bag of words. Thus, we only compare 
texts on a lexical level. Nonetheless, as we have determined, the lexicon is an impor-
tant factor in measuring readability of a given text. 

We have experimentally verified performance of both the automated Taylor test 
and the similarity model. Using leave-one-out cross validation we achieved from 
68.31% to 100% (depending on the reference corpus difficulty class) precision for 
automated Taylor test and from 71.74% to 100% for similarity-based approach. See 
Broda et al. (2014) for details. 

Besides returning a number of text statistics, Jasnopis supports also computer-
aided text simplification. In a given text, it marks difficult paragraphs, too long sen-
tences, and hard words. For hard words, substitution suggestions are presented some-
times using synonyms, hyponyms and hyperonyms from the plWordNet. No word-
sense disambiguation is implemented, so the user has to make the final decision. 
Since simplifying a document in a web-based environment might not be very conven-
ient, we have developed also Jasnopis plugins for OpenOffice and MS Word that 
cover most important functionalities of the web application.  



Jasnopis – A Program to Compute Readability of Texts 59 

5 Concluding remarks 

In this paper we have presented an approach for constructing a new readability for-
mula for Polish, based on Ridge regression. We use 33 lexical and syntactic text vari-
ables for predicting the text difficulty class, which is an improvement over the re-
ceived readability formulas, which only use two variables. The regression coefficients 
in the Ridge regression were fitted to the empirical text comprehension data – a psy-
cholinguistic experiment with 35 texts and 1759 subjects. We have also presented a 
computer program for measuring text readability. The application, called Jasnopis, 
not only implements the new formula but also provides other methods for measuring 
readability, both new and standard. By showing difficult sentences and words in a 
text, Jasnopis supports computer-aided text simplification, as well.  

The proposed approach to measuring readability can be extended in several ways. 
One might search for additional explanatory text features. Especially, sophisticated 
syntactic features based on parse trees might provide additional benefits. Also, one 
could use other machine learning approaches to come up with even smaller error 
rates. Since Jasnopis already provides a few different methods for measuring read-
ability, a straightforward approach would be to combine them using for example bag-
ging. Last, but not least, having the ability to measure readability for Polish is a nec-
essary step for (semi) automatic text simplification, which is an obvious direction of 
further research. 
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Abstract. In this paper we present ongoing work for the correction of Extended 
WordNet (XWN), the most extended freely downloadable resource of Logical 
Forms (LFs) – by the Human Language Technology Research Institute 
(HLTRI) of University of Texas at Dallas (UTD). In a previous paper we re-
ported on type and number of errors detected in the 140,000 entries of the re-
source, which amounted to some 30%. This didn’t include problems related to 
inconsistencies from disconnected variables which were not computable at the 
time. We now created an LF parser that parses each entry after appropriate 
transformations. The parser has been created to count the number of discon-
nected variables, be they object variables or predicate event variables: the result 
is 56% of LFs containing some disconnected variable. We devised two proce-
dures for correction: one lexical and the other structural which eventually al-
lowed a dramatic reduction: the final count is now 24%. Additional work has 
been carried out to improve the general consistency by manual intervention on 
"inconsistent" outputs signaled by the parser and has reduce the number of er-
rors to a reasonable percentage for such a resource, that is less that 15%. 

1  Introduction 

   This paper presents work carried out to parse and correct LF resources and in 
particular XWN or Extended WordNet (see Mihalcea et al. 2001), a freely download-
able resource containing a mapping into Logical Forms (LFs) of WordNet glosses. 
We started to produce a parser of LFs after working at individuating errors in XWN 
(see XXX). After we discovered that some 30% of all entries needed some correc-
tions, we decided to continue work for a number of reasons, some of which positive 
some others negative that will be discussed below. 

   As to negative question, the first regards the way in which syntactic structure has 
been produced. Current parsers mostly produce surface dependency/constituency 
structure with good enough approximation, but which is of no use for the mapping 
into LFs seeing that deep relations are missing. We are here referring to two types of 
parsers, Charniak’s constituency-like parsers and dependency-like parsers. Deep 
parsers are only a few and the accuracy of their performance is insufficient for a map-
ping into LFs seeing that LFs require fully consistent representations in order to pre-
serve the semantics (but see below). 
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   Now, there is a number of applications that produce LFs directly from syntactic 
representations, but their performance is unsatisfactory for the reasons explained in 
the previous paragraph. We tried LFToolkit (Rathod, Hobbs, 2005) which maps into 
LF directly from the output of Charniak's parser - more on this below. Worthwhile 
mentioning is also Cahill et al. (2007) attempt at transforming a portion of WSJ into 
LFs by means of a conversion of PennTreebank II augmented syntactic representation 
into complete F-structures. The authors claim an F-measure of 97% over the 96% of 
sentences converted, which is certainly a success. However, WSJ sentences are in no 
way comparable to glosses and their online parser does not allow the creation of LF1. 
Since LFs cannot be produced fully automatically and need a lot of manual additional 
work, we thought it reasonable to try and use existing LF resources such as ILF (In-
termediate Logical Forms) - see  Agerri & Peñas, 2010, XWN and others. We believe 
it is always worthwhile correcting these resources, wherever possible. WordNet 
glosses are definitions, meaning paraphrases and declarative descriptions associated 
to synsets of WN, which is what makes them highly valuable for semantically heavy 
tasks such as Q/A, WSD, and Text Understanding in general. 

   Coming now to the actual resources, LF mapping from PT (Penn Treebank)-like 
constituency-based syntactic structures are - in our opinion - a lot more error prone 
than those derived from dependency structure (see Agirre & Peñas, 2010). This is due 
to the fact that PT-like structures are more difficult to map due to the nature of con-
stituency structure, which is more functionally based than semantically oriented, 
when compared to dependency structures. Syntactic constituency in PT as well as the 
one produced by Charniak’s parser, associates main constituency nodes to functional 
heads like auxiliaries, complementizers, subordinating conjunctions, relative and 
interrogative pronouns, modals, verb particles. Nominal heads are usually lumped 
together with their determiners and modifiers, be they other nouns or adjectives. For 
this reason, using a dependency structure in which semantic heads are separated from 
functional ones can be and is – as ILF clearly shows, but see below – highly benefi-
cial for a safer mapping into LF. In this sense, ILF being mapped from dependency 
structures is much closer to semantic content than XWN - more on ILF below. 

   Both XWN and ILF have been mapped without the help of additional resources 
such as lexica and anaphora resolution algorithm, which were in fact necessary, as 
will be shown below. However, the net result is the absence of free ungrounded vari-
ables in ILF: on the contrary in XWN, the presence of ungrounded variables is the 
rule, as will be shown below. This is partly due to the lack of any one to one corre-
spondence between constituency structure and LF as encoded in the mapping algo-
rithm. 

   The paper is organized as follows: in section 2 we will review different types of 
Logical Forms and try to evaluate the contribution of each representation; in section 3 
we concentrate on XWN, WNE and ILF and individuate their strengths and weak-
nesses; section four is dedicated to presenting the parser itself; then we end with some 
evaluation, conclusion and future work. 

                                                           
1 http://lfg-demo.computing.dcu.ie/lfgparser.html 
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2  Logical Forms, but what kind? 

In XWN, WNE and ILF the mapping to LFs has been done semi-automatically 
with manual checking of the majority of syntactic constituency structures. However, 
the actual mapping process has not been subsequently checked nor evaluated (but see 
Vasile, 2004). 

   What kind of LF are we referring to? The LF we are referring to is a flat un-
scoped first-order logic (FOL) well-formed formula representing the "meaning" of a 
sentence. It has been restricted to a conjunction of predicates which in turn contain 
arguments that have been hampered from being themselves recursive. Possible argu-
ments of predicates can be event variables and argument variables, the latter being 
also called object variables, referring to entities, properties and attributes. 

   However, not all work on Logical Form would look the same and there are lots 
of different ways of computing and building them. In XWN, for instance, there is no 
attempt at covering all if not most of what is commonly regarded as semantically 
related problems that might as such be represented in a LF. Here below we show 
some valuable attempt at including some of the semantics in the LF from the contents 
of the book by (Bos & Delmonte, 2008) for the workshop of ACL Sigsem held in 
Venice. 

   The first LF we show is the one used by J.Bos to represent DRS. As can be seen 
below, variables introduced in the representation are all of the same kind, the prefix 
always being X. What changes is the number that follows the X. As a result there is 
no distinct event variable, with an E prefix. The text is one of the Shared Task of the 
workshop and we take these two sentences (ibid., 283): 

Sent.1 Cervical cancer is caused by a virus.  
Sent.2 That has been known for some time and it has led to a vaccine that seems to 

prevent it. 
 

|x0 x1 x2    | 
| thing(x0) 
| neuter(x1) 
| neuter(x2) 
|_____________ 
 
 
 
 
 
 
 
 
 
 

 
| x3 x4 x5  |  
| cancer(x3) 
| cervical(x3)  
| cause(x4) 
| virus(x5) 
| event(x4) 
| theme(x4,x3)  
| by(x4,x5)  
|_____________ 
 
 
 
 
 

 
 
|x6 x7 |  
|know(x6) 
|time(x7) 
|event(x6) 
|theme(x6,x0)   
|for(x6,x7)  
|_____________

_ 
|x8 x9 x10 x11 

| |lead(x8) 
|vaccine(x9) 
|seem(x10) 
|proposition(x11) 

 
|event(x10) 
|event(x8) 
|agent(x8,x1) 
|agent(x10,x9) 
|theme(x10,x11) 

| |to(x8,x9) 
|_____________

_ 
|x11:x12 
|prevent(x12)  
|event(x12)  
|agent(x12,x9)  
|theme(x12,x2)  
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In this LF, events have been reified and appear as functions heading their variable.  
Also semantic/thematic roles have been reified, and head the variables of both argu-
ment and event. This choice multiplies the number of logical objects, but simplifies 
the matching. Another way of rendering the LF of sentence 1, could have been 
cause(e4,x5,x3),cancer(x3),cervical(x3),by(e4,x5),virus(x5) 
A slightly similar approach has been taken by (Clark et al., 2008) with a system 

that also comprises a parser and a logical form generator2. Their example is shown 
below, where variable are indicated by underscored _X: 
 
Sent.3 "A soldier was killed in a gun battle." 
(DECL ((VAR _X1 "a" "soldier") 
(VAR _X2 "a" "battle" (NN "gun" "battle")))  
(S (PAST) NIL "kill" _X1 (PP "in" _X2))) 
 
This mixed syntactic structure is then used to generate "ground logical assertions 

of the form r(x,y), containing Skolem instances, by recursively applying a set of syn-
tactic rewrite rules to it. Verbs are reified as individuals, Davidsonian-style."(ibid., 
48; but see also Davidson, 1967;1980): 
 
object(kill01,soldier01) 
in(kill01,battle01) 
modifier(battle01,gun01) 
 
As the authors comment, predicates used in this representation are just syntactic re-

lations of the type SUBJect_of, OBJect_of, and MODifier_of and all prepositions, 
which typically take two variables related to the individuals they are bound to. In 
particular, in this representation Skolem instances are associated with its correspond-
ing input word. Syntactic relations represent deep relations: the surface subject of the 
passive sentence Sent.3 is turned into an OBJect. 

Another richer way of representing meaning in LF is proposed by Delmonte in Bos 
& Delmonte 2008:291, for the sentence, 

 
Sent.4 John went into a restaurant 
wff(situation, 
    wff(go, 
     < entity : sn4 : wff(isa, sn4, John) >, 
     < indefinite : sn5 : wff(isa, sn5, restaurant) >,  
     < event : f1 : wff(and, wff(isa, f1, ev), 
       wff(time, f1, < definite : t2 : 
    wff(and, wff(isa, t2, tloc), wff(pres, t2)) >)) >)) 
where we see that two semantic elements appear in the representation, 

DEFINITENESS, and TENSE which is associated to a Reference Time location vari-

                                                           
2 In the authors' words, the LF is "a semi-formal structure between a parse and full logic, 
loosely based on Rathod & Hobbs, 2005. The LF is a simplified and normalized tree structure 
with logic-type elements, generated by rules parallel to the grammar rules, that contains vari-
ables for noun phrases and additional expressions for other sentence constituents. Some disam-
biguation decisions are performed at this stage (e.g., structural, part of speech), while others are 
deferred (e.g., word senses, semantic roles), and there is no explicit quantifier scoping. " 
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able, T2. As will be discussed below, Reference Time and Definiteness are two im-
portant semantic features and are introduced also in other LF representations. 

3  Previous Work related to XWN 

There is a certain amount of additional work carried out on XWN that we want to 
review briefly here below. Apart from XWN by UTD people, the other effort to trans-
late WN Glosses into Logical Form is by people at USC/ISI California, in 2006. Their 
results are also available on the web and freely downloadable at ISI, 2007. As the 
comment on the related webpage clearly states, "The following additional "standoff" 
files providing further semantic information to supplement the WordNet 3.0 release." 
The file contains LFs in XML format for most of the glosses "except where genera-
tion failed" as the comment clearly warns out. The authors made a subset of the core 
WordNet including 2800 noun senses in plain text format, in 2007. As the comments 
on the website say, "these are generally of higher quality than those contained in the 
file below for all glosses." We find these representations in eventuality notation too 
cluttered with additional event variables, which makes the LF entry too heavy to read, 
as can be seen in the example of the entry BUTTER included below. These files can 
be downloaded at http1;http2. The conversion process of WN glosses proceeds by 
parsing with Charniak parser and the result is converted into a logical syntax by a 
system called LFToolkit (Rathod & Hobbs, 2005). Each lexical semantic head is 
transformed into logical fragments involving variables. For instance "John works" - 
commented in detail below - is translated into John(x1) & work(e,x2) & present(e), 
where e is a working event. Object variables are differentiated at first (x1 and x2), and 
then a rule which recognizes “John” as the subject of “works” sets x1 and x2 equal to 
each other. This works for the majority of English syntactic constructions. As the 
authors themselves comment, whenever there was a failure by the LFToolkit, it hap-
pened as a result of a bad parse, due to the presence of constructions for which no rule 
in LFToolkit had been written3. 

   I will show here below the entry for BUTTER as it has been transformed by the 
two systems. The first representation is the one produced at USC/ISI and the second 
one is the one by XWN in (Moldovan & Rus, 2001). In fact both representations are 
in XML format, but for easiness of reading we eliminate angled brackets: 

 
 
 
 

                                                           
3 "In these cases, the constituents are translated into logic, so that no information is lost; what is 
lost is the equalities between variables that provides the connections between the constituents. 
For instance, in the “John works” example, we would know that there was someone named 
John and that somebody works, but we would not know that they were the same person. Alto-
gether 98.1% of the 5,000 core glosses were translated into correct axioms (59.4%) or axioms 
that had all the propositional content but were disconnected in this way (38.7%). The remaining 
1.9% of these glosses had bizarrely wrong parses due to noun-adjective ambiguities or to com-
plex conjunction ambiguities."(ibid.,49) 
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example (1) 
entry word="butter#n#1" status="partial"gloss = an  
edible emulsion of fat globules made by churning milk 
or cream; for cooking and table use butter#n#1'(e0,x0) 
-> edible'(e9,x1) + emulsion#n#1'(e1,x1) + of' 
(e6,x1,x12) + fat#n#1'(e15,x17)+nn'(e14, x17,x12) + 
globule#n#1'(e10,x12) + dset(s5,x12,e10+e14) + ma-
ke#v#15'(e2,x4,x3,x2) + by'(e3,x5,e7) + churn#v#1' 
(e7,x10,x14) + milk/cream#n#2'(e11,x14) + for'(e4,x6, 
x11) + cooking'(e12,x16) + table'(e13, x15)milk' 
(e11, x14) -> milk/cream#n#2'(e,x14)cream#n#2'(e11, 
x14) -> milk/cream#n#2'(e,x14) 
 
example (2) 
butter:NN(x1) --> edible_JJ(x1) emulsion:NN(x1)of:IN 
(x1,x2) fat:JJ(x2) globule:NN(x2) make:VB(e1,x9,x1) 
by:IN(e1,e2) churn:VB(e2,x2,x5) milk:NN(x3) or:CC 
(x5,x3,x4) cream:NN(x4) 
 
As can be seen in example(1), all lexical items are treated as predicates and have 

an event variable starting with E, associated to them. Event variables are typically 
unbound and should be quantified over. They are associated to object variables which 
start with X. In some cases, when a DSET is asserted, event variables are connected 
explicitly to their object variable, as in the nominal compound "FAT GLOBULES". 
Also this LF representation, which is classified as PARTIAL, contains a lot of un-
bound or ungrounded variables, as for instance in the case of MAKE(e2,x4,x3,x2) in 
example (1), where none of the object variables have an individual ground object 
linked to them.  

   Example(2) is much simpler and shorter. In this case, the LF representation pro-
duced has a better output. However, if we look at the representation associated to 
MAKE, we notice that only has three variables, one of which is the event variable, e1, 
and the remaining two are argument variables - x9, x1. Whereas x1 is properly bound 
to the entry BUTTER, the second variable is unbound. We can also notice that the 
first representation treats MAKE as a 3-place predicate, as in the sentence "John made 
the butter smooth by...". On the contrary, the second representation only has two ar-
gument variables: this could be justified by the use of MAKE in a participial struc-
ture, with a different meaning though.  The meaning in this case is obtained by omit-
ting the secondary predication. It is just a simple transitive structure in a passivized 
form. More on this topic below. 

   The problem related to these examples are typical problems of mapping from 
surface syntactic structures to Logical Forms, and we have tried to overcome them by 
building an LF parser that checks for consistency. Here the term consistency is re-
ferred solely to the existence of free unbound or ungrounded variables in a given LF 
representation. This fact does not allow relations indicated by predicates to be associ-
ated to arguments and modifiers, which are thus disconnected. In this way, the for-
mula is useless and meaningless. Variables associated to predicates needs to be 
equated with those of the arguments of the predicate in order to acquire semantic 
consistency. From our analysis, 54.05% of all LFs contained in XWN suffer from that 
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problem. In particular, they constitute 71,658 over 132,587 where we found the fol-
lowing data: 
 
Table 1. Errors detected by the parser 

categories Dis.Vars Tot.LFs % 
Adverbs 487 3982 12.23 

Adjectives 8886 20317 43.74 
Verbs 9751 14454 67.46 
Nouns 52672 94028 56.00 
Total 71,658 132,587 54.05 

Here percent values refer to errors found by the parser. 

4  The LF Parser 

The parser takes as input two files, one containing the list of logical forms as they 
have been listed in XWN for the different categories - verb, noun, adjective, adverb; 
and another file containing the synset offset followed by the synset. Each synset is 
associated to a gloss that contains one or more definitions, comments or examples: 
this is what has been transformed into Logical Forms in XWN. So the parser knows 
that there may be one of more LFs to associated to the same synset offset index. Now, 
each Logical Form will necessarily start with the same lemma which corresponds to 
the first lemma in the synset: for instance, the entry 00002931 of the ADJ dataset 
corresponding to the synset "abducent, abducting", has the associated gloss "espe-
cially of muscles; drawing away from the midline of the body or from and adjacent 
part". This gloss is transformed into two LFs, respectively, 

 
abducent:JJ(x1)-> draw_away:VB(e1,x1,x5) from:IN(e1,x2)  
midline:NN(x2) of:IN(x2,x3) body:NN(x3) from:IN(e1,x4)  
adjacent:JJ(x4) part:NN(x4) 
 
abducent:JJ(x1) -> especially:RB(x1) of:IN(x1,x2)  
muscle:NN(x2) 

 
These have then been turned into the Prolog compliant corresponding structures 

below: 
 
lf(abducent_JJ(x1),[draw_away_VB(e1,x1,x5),from_IN(e1,x2),mid
line_NN(x2), 
of_IN(x2,x3),body_NN(x3),from_IN(e1,x4),adjacent_JJ(x4),part_
NN(x4)]). 
 
lf(abducent_JJ(x1),[especially_RB(x1),of_IN(x1,x2),muscle_NN 
(x2)]). 

 
The parser takes the synset offset associated to the current synset and the first LF 

in the current list. Then it matches the first lemma in the synset with the lemma head-
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ing the LF. After correcting the LF, the parser checks the rest of the list to see whether 
there is another occurence of the current lemma and in that case it keeps the same 
offset index, otherwise it passes the rest of the synset-offset list. As will be discussed 
in detail in a section below, this version of the algorithm works fine only for a part of 
WordNet, proper names behave differently and the algorithm had to be modified to 
cope with them. The output of the algorithm is a conjunction of the information con-
tained in the two files, as follows: 

 
synset(300002931,abducent_JJ(x1),[abducent,abducting])-
[draw_away_VB-[e1,x1], from_IN-[e1,x2],midline_NN(x2),of_IN 
(x2,x3),body_NN(x3),from_IN-[e1,x4],adjacent_JJ(x4), 
part_NN(x4)] 
 
synset(300002931,abducent_JJ(x1),[abducent,abducting])-
[especially_RB(x1), of_IN(x1,x2),muscle_NN(x2)] 

 
 
There are at least three different ways of conceiving the relation intervening be-

tween variables in a flat unscoped LF. As discussed above, the simplest way would be 
that of considering all variables free and each one different from the others, and then 
at the end, specifying those variables that have to be regarded equal by additional 
equations. A second way, is to regard all variables equal, and then specifying the ones 
that have to be regarded different - and this is what has been done in Robust Minimal 
Recursive Semantics, (RMRS) (Copestake, 2009).  In both these two ways, however, 
variables need to be precisely bound as required, which is not what actually happens. 
We report one of the examples from that presentation, for the sentence "Some big 
angry dogs bark loudly", where we see that a scoped LF is used to convey the role of 
quantifier "some": 
 
example (3) 

some_q(x4, big_a_1(e8,x4) ⋀ angry_a_1(e9, x4) ⋀ dog_n_1(x4), 
bark_v_1(e2,x4) ⋀ loud_a_1(e10,e2)) 
 
Notice that in this LF representation, every attribute and modifier has a separate 

event variable name. This is remarkably different from what has been done in XWN. 
   The third way, which is more consistent with what has been done in the XWN 

LF representation, is to consider variable equalities to indicate relations of some kind: 
in particular, any modification relation is indicated by variable equality; the same 
applies to argument relations. Another important topic regards the way in which op-
tional or omitted arguments should be treated in the LF representation. As discussed 
in (Copestake, 2009) LFs for predicates should consider deep structure information 
rather than simply surface structure, and in case an argument is missing - because it 
has been omitted in a passive structure or simply because optional - this should be 
signaled appropriately by marking the corresponding slot with U (for unexpressed). 
These are some of the problems that we will try to tackle in our parser.  
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4.1 The architecture of the LF parser 

The LF parser is organized in a pipeline: 
A. the first module tries to match variables in predicates with their object counter-

part.  
B. the second module does the opposite: it tries to match variables in object formu-

las with their predicate counterparts.  
This has to account for a number of different logical structures. The most common 

one is the one accounting for predicate argument structures governed by verbs, as in, 
- buy_VB(e1,x2,x1) 
where e1 is a generic event variable which might or might not have higher level 

binders, or meta level formula (see below) associated to it; x2 is by slot convention a 
variable associated to the complement (in this case an object); and x1 is again by slot 
convention the variable associated to the subject, treated as external argument. A 
second structure is the one associated to prepositions and other similar two place 
relation markers as comparative conjunctions or even subordinators and relative pro-
nouns: 
- of_IN(x2,x3) - than_IN(x4,x5) etc. 
where x(number) variables bind objects, and prepositions - when they introduce 

gerundives - and (subordinating) conjunctions treated as relation markers: 
- by_IN(e1,e2) - since_IN(e4,e5) 
All relation markers only contain relational variables and no event or object vari-

able of their own. 
Object formulae include simple one place predication with just one variable asso-

ciated to an entity, a property or an attribute, as in 
- dog_NN(x2) 
XWN uses the same specification also for modifiers like adjectives and adverbials: 
- angry_JJ(x2), fast_RB(e2) 
but this, on the basis of what we have commented above, needs some reorganiza-

tion. Modifiers are then supplemented by an additional variable of their own that 
accounts for the role of predicate they fulfill. This will allow to differentiate cases in 
which the same adjectival word - say "red" - may play the role of predicate in a copu-
lative construction which has to be differentiated from the role of attribute in a nomi-
nal compound, as in (4b) "The red hat was stiff" vs. (4a)"The stiff hat was red". The 
two sentences could be differentiated as follows, where x1 is associated to the subject 
of predication, "hat" and the predication itself is constituted by a different property 
identified by variable e3. The attribute is associated to the nominal head object vari-
able x1 and is specified with event variable e2, assuming in this way that the property 
of being “stiff” is independent of the property of being “red”, but they are both asso-
ciated to the entity X1: 
 
example(4a) 
be_VB(e1,x1), hat_NN(x1), stiff_JJ(e2,x1), red_JJ 
(e3,e1) 
example(4b) 
be_VB(e1,x1), hat_NN(x1), red_JJ(e2,x1), stiff_JJ 
(e3,e1) 
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There are then mixed formulae which include both event and object variables,  
as in, 
 
- by_means_of_IN(e1,x5) = (buying) by means of 
- consider_VB(e3,e1,x2,x1), silly_JJ(e1,x2) = consider 
(your dog) silly 

 
where x2 is the variable associated to "dog" and e1 is included in the argument list 

of the verb.  This is what differentiated real copulative verbs like "be", and transitive 
verbs like CONSIDER which have secondary predication as argument. As anticipated 
above, there are also meta-level formulae and they are of two types: 

- coordinating conjunctions 
- complex nominal compound 
The first refers to coordinating conjunctions, which allow to refer to sets of objects 

or predicates. The latter are separately specified: here, rather than duplicating the 
noun governors, the meta abstract coordinating conjunction is used, as shown below. 
Coordination may interest both event and object variables, as follows: 

- and_CC(x6,x1,x2,x3) 
- decide_VB(e4,e5,x6), leave_VB(e5,x6) 

for the sentence, "Frank, John, and the dog decided to leave". 
A similar formula would be used in case event variable should be coordinated  

as in, 

- or_CC(e8,e1,e2,e3) 

where e8 would be the variable associated to the coordinate structure. 
The other meta level formula is associated to the function NN introduced in the 

XWN following Jerry Hobb's suggestions. In this case, the only possible set of vari-
ables is the one associated to objects or nominals indicating properties of the head, 
usually the last variable in the set. As in one below for "Samsung's profits" where x4 
and x6 are bound to single entries, 

- NN(x7,x4,x6) 
- Samsung_NN(x4), profit_NN(x6) 

and the variable x7 would be used by the event predicate that governs the nominal 
compound, 

- rise_VB(e2,x7) 

In order to allow for smooth matching procedures, all meta-level formulae are 
turned into their simple binary level by reification. Reification is also used for nega-
tion as shown below: 

- coordinations are turned into one place predicates, 
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- and_CC(x6,x1,x2,x3) --> and_CC(xc), coord(xc,x6),  
coord(xc,x1), coord(xc,x2), coord(xc,x3) 

- negations are reified:  

- not_RB(e2) --> neg(xn,e2),not(xn) 
 
In fact, all negation formulae had to be corrected before starting to check for their 

consistency. We eliminated all DO auxiliaries and associated the negation predicate 
directly to the main verb variable, using regular expressions. In this way we got a 
double result: unwanted auxiliary information was eliminated and the negation opera-
tor is now correctly associated to the main verb meaning. A similar change had to be 
introduced for all cases of wrong treatment of the amalgam CANNOT, which in 
XWN is introduced directly without a decomposition, and in many cases is wrongly 
tagged as noun. So we produced the following change again by regular expression, 
where we deleted the variable associated to the wrong tagging and substitute it with 
the right one. 

4.2 Correcting Logical Forms 

We envisage two types of corrections: one induced by lexical information and an-
other by structural information. The first correction is addressed to all those predicates 
that contain a dummy variable for an argument which does not exist in reality. In fact, 
here we are referring to verbs belonging to classes like unergative verbs, unaccusative 
verbs, weather verb, impersonal verbs, but also to verbs which can be intransitivized, 
ergativized. That is verbs which induce intransitive structures, either by raising the 
object to subject position and eliminating the deep subject; or cases of verbs which 
allow the object to be left unexpressed, that is something which can be quantified over 
by an existential quantifier.  Always on the basis of lexical information, we check for 
intransitivized and passivized TRANSITIVE verbs, which constitute by far the major-
ity of cases. In particular, in case a passivized past participle is being used, this is 
usually accompanied by the omission of the deep subject. 

As to the structural corrections, we have been filtering wrong structures by a pro-
cedures that allows the correction module to select only those parts of the formula 
which need to be modified. In order to extract information related to wrong and in-
consistent LFs, the parser collects variables related to object formula separately from 
those related to predicate formula. Then it does a simple intersection. The set of inter-
secting variables is then used to verify whether there are ungrounded variables.  

We used the two procedures in a sequence – at first we found ungrounded variables 
and then looked for predicates with unneeded variables that coincided with the ones 
found in the previous procedures – and eliminated them. The results are remarkable: 
we managed to eliminate some 32%, that is almost half of previous 72% of all dis-
connected variables. In particular, they now constitute 31,583 over 132,587 – 23.82%. 
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Table 2. Errors after parser correction 

categories Dis.Vars Tot.LFs % after % before 
Adverbs 250 3982 6.28 12.23 
Adjectives 1599 20317 7.87 43.74 
Verbs 823 14454 5.69 67.46 
Nouns 28911 94028 30.75 56.00 
Total 31,583 132,587 23.82 54.05 

 
As said above, XWN introduces a first event variable e1 or sometimes e0, which 

should be quantified over and are left unbound. Also a first object related variable is 
always associated to nouns and adjectives, and it is X1. These are not considered in 
the intersection and are removed from the set. Here below some examples of inconsis-
tent formula for ABLE: 
 
gloss: having the necessary means or skill or know-how or authority to do some-

thing 

able:JJ(x1) -> have:VB(e1, x1, x8) necessary:JJ(x8) 
means:NN(x2) skill:NN(x3) know-how:NN(x4) or:CC(x8, x2, 
x3, x4, x5) authority:NN(x5) to:IN(x8, e2) do:VB(e2, 
x8, x6) something:NN(x6) 

where DO has x8 as Subject variable, which should be x1, that is the person that is 
ABLE, SUBJect of the predication of HAVE and also head of the adjective modifier. 
More errors are contained in the formula, where necessary(x8) should be neces-
sary(x2), seeing that it only modifies "means". The following case is an inconsistency 
caused by various errors: "dependent_on" is associated to an unground variable "x4" 
and not "x1"; the same applies to "relative" which is associated to "x2", rather than 
"x1": 

 
gloss: not dependent on or conditioned by or relative to anything else 

independent:JJ(x1) -> not:RB(e2) dependent_on:JJ(x4) 
condition:VB(e1, x5, x1) by:IN(e1, x5) or:CC(e2, e1) 
relative:JJ(x2) to:IN(e2, x2) anything:NN(x2) 
else:JJ(x2) 

here below, we show what the correct LF would be like after introducing predicate 
variables in each adjective modifier, changed ungrounded variable associated to 
obligatory argument into an undefined U variable: 

independent_JJ(x1) -> not_RB(e3),  
dependent_on_JJ(e1,u,x1), or_CC(e3,e1,e2),  
condition_VB(e2,x2,x1), by_IN(x2,u), or_CC(e4,e3,e5), 
relative_to_JJ(e5,x3,x1), anything_NN(x3), else_JJ(x3) 
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where DEPENDENT_ON has become a complex phrasal predicat. In its formula, 
the preposition ON requires an additional variable, ungrounded, though; and 
RELATIVE has also become a phrasal adjective with preposition and as such in need 
of an additional argument variable. To this end, we turned both adjectives into two 
place predicates with an event variable to indicate that there is a dummy BE verb 
implicit in the gloss. 

As said above, the parser at first measures intersection: in case no intersection in-
tervenes then a flag is written on the output file and used by the correction module. In 
the following case, for instance, after deleting x1 and e1, the intersection is empty. 
 
INPUT 
lf(approved_JJ(x1),[generally_RB(e1),especially_RB(e1),
officially_RB(e1),judge_VB(e1,x5,x1),acceptable_JJ(x3), 
satisfactory_JJ(x3)]). 
OUTPUT 
approved_JJ(x1)  6  [x5,x3] no intersection 
lf(approved_JJ(x1),[generally_RB(e2,e1),especially_RB 
(e3,e1),officially_RB(e4,e1),judge_VB(e1,e5,u,x1), 
acceptable_JJ(e6,e5),satisfactory_JJ(e7,e5)]). 
 
where we see that APPROVED has an LF formula made of 6 elements, that the in-

tersection of the relevant variables is empty, and that there are two variables in par-
ticular which have no correspondence in object formula. The parser will inspect the 
formulas one by one, and eventually will equate x5 with x3, thus making the whole 
LF consistent. The equation decision is determined by the fact that: x5 is contained in 
a predicate formula, which also contains x1, and that x3 are both contained in object 
formula. In addition they both FOLLOW the predicate, this being a clear indication - 
in English at least - that they constitute a COMPLEMENT to the predicate itself. The 
modified and corrected formula contains also additional event variables for attributes 
predicated to x3 and an U for unexpressed argument variables. 

In particular, the system found 110 cases of inconsistencies in the ADVERBS file 
of XWN, 1154 cases of inconsistencies in the ADJECTIVES file, 2054 in the VERBS 
file and 5276 in the NOUNS file. Overall, 8594 cases that we addressed by the correc-
tion module. The parser managed to correct half of them in a first run. Then more 
rules have been devised to correct the rest of the errors. These rules have then been 
used to check and correct most of the remaining LFs. 

In fact, as a whole, we managed to correct many more entries, thanks to the fact 
that the parser simply got stucked whenever the LF entry was not computable, i.e. 
none of the variables matched either x1 or e1. We also corrected all negation opera-
tors and some of the conjunctions which were not tagged consistently, as for instance 
THEN, which was tagged as RB (adverbial) most of the time, and only sometimes as 
IN. 

The evaluation of the corrections produced manually and automatically is made di-
rectly by the parser itself. The output of the parser, in the correction mode, is a file 
containing all LFs which have some inconsistency. Corrections have been carried out 
specifically on the output of the parser. Evaluation in this case is computed accord-
ingly on the basis of number of mistakes found by the same parser.  
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4.3 The case of Proper Names in WN 

The parser works smoothly with three files, the ones containing Adverbs, Adjectives, 
and Verbs, but when the file containing Nouns is started problems arise which eventu-
ally obliged us to modify the algorithm. WordNet contains some 24K capital letter ini-
tial lemmata which can be computed as proper names or named entities, i.e. person 
names, organization names, famous events names, institution names, location names, 
etc.(see Miller & Hristea, 2006). Contrary to expectations, the description of these en-
tries in the database resembles the one used for common nouns, which as we know are 
used to denote classes of individuals, whereas proper names would rather be used to 
individuate uniquely a single referent in the world - they are rigid designators according 
to Kripke4. In fact, this is only partially true, seeing that a proper name made by the 
compound of first name and surname today can be regarded ambiguous and can refer to 
different referents in the world. The problem was partially amended by Miller & 
Hristea, where they produced a new version of WordNet,  2.1 in which instances – 
proper names – where differentiated from classes – common nouns – by the presence of 
a suffix in the definition of hypernyms, added to @, like this @i (ibid. 3). 

Now, let's consider synsets: synsets are a collection or set of synonym lemmata 
which may constitute a single concept in a specific language. Lexica of different lan-
guages may vary a lot on this and a synset made of a plurality of referent words for 
the same concepts, translated in another language may turn up to be uniquely denoted 
by one single lemma. The other dimension of synsets is that they can be used to regis-
ter the presence of homographs denoting different concepts, i.e. their polysemous 
nature. In this case, the same lemma - in case the synset is a singleton - or the first 
lemma of the set – if the synset has more than one member, is used. This is marked in 
WN by a different synset offset index as for instance in the typical case of PLANT, 
which is associated to the following four synsets: 

 
00014510 plant, flora, plant_life 
03806817 plant, works, industrial_plant 
05562308 plant 
09760967 plant 
 
The same word – a polysemous homograph – appears either as singleton or as first 

member of a synset to denote different concepts. From a lexicographic point of view 
these four entries, which instantiate totally different senses and are associated with 
different glosses, are located in different places or lexical fields. As can be seen, the 
offset indices are very far from one another, thus indicating the distance in meaning 
involved in each of the different lemma forms. This is what we find with common 
nouns: it would be impossible to have a duplicate of the same lemma in adjacency 
within the same semantic lexical field indicating an instance or a slightly different 
meaning. Polysemous words in WordNet are not many, and their presence in first 
position in the synset is also an indication of the high frequency of usage of the word 
in the language.  

                                                           
4 In his lecture in 1970, and then published in the book Naming and Necessity, by Saul A. 
Kripke, 1980, Blackwell, Harvard University Press. 
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   The problem is that WordNet uses a similar technique to store information about 
"polysemous" proper names. In fact, this may sound quite strange, seeing that the 
only meaning associated to a proper name is the referent which they should designate. 
So what WordNet is actually highlighting by associating a synset to proper names is, 
perhaps, the possibility that two or more proper names share part of the name. This is 
usually the last name for person names and the name as identifier of different types of 
named entities, like a famous work of art, or a famous book, etc. In some cases, how-
ever, it can also be the first name. As an example, here is the list of different entries 
associated to JOHN, first lemma: 

 
06043175 John, Gospel_According_to_John 
10364758 John, Saint_John, St_John, 

Saint_John_the_Apostle, St_John_the_Apostle, 
John_the_Evangelist,  John_the_Divine 

10365110 John, King_John, John_Lackland 
 
We have a first mention of JOHN as first member of a synset at 06043175, but 

then the two following mentions appear one adjacent to the other - thus belonging to 
the same semantic field (but is this a field at all?). On the other side, we know that 
when a person name is involved, then the title or the surname is usually needed to 
address the right person.  

This might also not be sufficient, but it is obvious that first (and last) names can be 
totally ambiguous, without having to be regarded polysemous. Besides, we know that 
the concept is denoted by the full content of the synset, besides the gloss. And as the 
content makes it clear, we are here dealing with three totally different referents: one is 
the Gospel, the other is the Apostle and the third a King. So why use JOHN as first 
lemma and not the more distinctive second (or third if available) lemma? We find this 
to be totally misleading from a semantic point of view, because here we are not deal-
ing with polysemous words as was the case with PLANT, but rather with different 
referential identity. Besides, the word JOHN by itself can have additional uses. Con-
sider for instance the corresponding lower case word "john" which is used with two 
ambiguous meanings: 

 
10076833 whoremaster, whoremonger, john 
04274300 toilet, lavatory, lav, can, john, privy, bathroom 
 
Here "john" is not the first member of the synset but the difference in meaning is tes-

tified again by the distance in terms of offset index values. In these two cases, the choice 
of lexicographers was not to highlight the polysemy of "john" which appears included in 
the set but not in first place, and will be assigned the corresponding offset index. 

   There are only sparse cases of first names as first lemmata in adjacent synsets be-
fore reaching the lexicographically marked section of the Noun file where all proper 
names are collected. Then, the choice to use first/last names as first members of the 
synset becomes very common in the more restricted list of person names made up of 
some 3200 entries that start around offset index 110102000. Here are some examples: 

 
110102151 Aaron 
110102325 Aaron, Henry_Louis_Aaron, Hank_Aaron 
110103348 Adam, Robert_Adam 
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110103502 Adams, John_Adams, President_Adams, Presi-
dent_John_Adams 

110103654 Adams, John_Quincy_Adams, President_Adams, 
President_John_Quincy_Adams 

110103839 Adams, Sam_Adams, Samuel_Adams 
110105319 Agrippina, Agrippina_the_Elder 
110105487 Agrippina, Agrippina_the_Younger 
110109993 Allen, Ethan_Allen 
110110169 Allen, Woody_Allen, Allen_Stewart_Konigsberg 
110110327 Allen,Gracie_Allen, 

Grace_Ethel_Cecile_Rosalie_Allen, Gracie 
110112423 Anderson, Carl_Anderson, Carl_David_Anderson 
110112636 Anderson, Marian_Anderson 
110112784 Anderson, Maxwell_Anderson 
110112893 Anderson,Philip_Anderson, 

Philip_Warren_Anderson,Phil_Anderson 
110113110 Anderson, Sherwood_Anderson 

 
and the list may continue. In order to cope with this uncouth and unmotivated 

choice, the algorithm had to be modified: now there would be uncertainty in both 
files. In the list of LFs, where more than one LF would be associated to each sense 
and would start with the same word. And in the gloss offset index + synset, where the 
same first lemma appearing in more than one synset, now has been used to denote a 
different concept in adjacency. There was no way to use the same automatic approach 
we used previously. So in order to complete work on the NOUN data file, we have 
decided to disambiguate each and every synset that needed it: i.e. all those synsets 
that were associated with more than one LF. After manual modifications, here below 
is the output and the input for the sequence of adjacent "Anderson": 

 
synset(110112423,anderson_NN(x1),['Anderson','Carl_Anderson','Carl_ 
David_Anderson'])-[united_NN(x1,e6),state_NN(x2,e5),physicist_NN 
(x3,e5),discover_VB-[e1,x1,x4],antimatter_NN(x4),in_IN(x4,x5),form_NN 
(x5),of_IN(x5,x6),antielectron_NN(x6), call_VB-[e3,x6,e3],positron_NN 
(x7,e3)] 
 
synset(110112636,marian_anderson_NN(x1),['Marian_Anderson', 
'Anderson'])-[united_NN(x1,e2),state_NN(x2,e2),contralto_NN(x3,e2), 
note_VB-[e1,x1],for_IN-[e1,x4],performance_NN(x4),of_IN(x4,x5), 
spiritual_NN(x5)] 
 
synset(110112784,anderson_NN(x1),['Anderson','Maxwell_Anderson'])-
[united_NN(x1,e1),state_NN(x2,e1),dramatist_NN(x3,e1)] 
 
synset(110112893,philip_anderson_NN(x1),['Philip_Anderson', 'Ander-
son','Philip_Warren_Anderson','Phil_Anderson'])-[united_NN(x1,e2), 
state_NN(x2,e2),physicist_NN(x3,e2),study_VB-[e1,x1,x4],electronic_JJ 
(x4),structure_NN(x4),of_IN(x4,x5),magnetic_JJ(x5),disordered_JJ(x5),
system_NN(x5)] 
 
synset(110113110,anderson_NN(x1),['Anderson','Sherwood_Anderson'])-
[united_NN(x1,e2),state_NN(x2,e2),author_NN(x3,e2),works_NN(x4,e2), 
be_VB-[e1,x5,x4],frequently_RB(x5,e2),autobiographical_JJ(x5,e2)] 
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which was done after transforming the LFs as follows, 
 
lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),physicist_NN(x3), 
discover_VB(e1,x1,x4),antimatter_NN(x4),in_IN(x4,x5),form_NN(x5), 
of_IN(x5,x6),antielectron_NN(x6),be_VB(e2,x6,e3),call_VB(e3,x8,x6), 
positron_NN(x7)]). 
lf(marian_anderson_NN(x1),[united_NN(x1),state_NN(x2),contralto_NN 
(x3),note_VB(e1,x6,x1),for_IN(e1,x4),performance_NN(x4),of_IN(x4,x5), 
spiritual_NN(x5)]). 
lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),dramatist_NN(x3)]). 
lf(philip_anderson_NN(x1),[united_NN(x1),state_NN(x2),physicist_NN 
(x3),study_VB(e1,x1,x4),electronic_JJ(x4),structure_NN(x4),of_IN(x4, 
x5),magnetic_JJ(x5),disordered_JJ(x5),system_NN(x5)]). 
lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),author_NN(x3),works_NN
(x4),be_VB(e1,x4,x26),frequently_RB(x5),autobiographical_JJ(x5)]). 

 
and the offset indices+synsets accordingly, 
 
110112423  Anderson, Carl_Anderson, Carl_David_Anderson 
110112636  Marian_Anderson, Anderson 
110112784  Anderson, Maxwell_Anderson 
110112893  Philip_Anderson, Anderson, 

Philip_Warren_Anderson, Phil_Anderson 
110113110  Anderson, Sherwood_Anderson 

5  Conclusion and Future Work 

In this paper we presented ongoing work to produce a parser for Logical Forms re-
sources that checks for their consistency, which is basically focussing on the existence 
of disconnected and ungrounded variables, and tries to correct them. This problem is 
divided up into two separate processes: one that looks for object variables and tries to 
connect them to the predicate they depend on. Another process looks for arity of ar-
guments in any predicate formula in order to eliminate unwanted and unneeded vari-
ables: these may ensue basically due to the use of a basic lexical structure in presence, 
however, of omitted arguments. Arguments may be omitted either because they are 
optional, or because the predicate is used in a passive, intransitivized or ergativized 
construction. We found an amount of disconnected variables that averages 56% of all 
LFs, that is 71000 wrong entries over 138000 overall. After running the algorithm for 
correction which used a lexicon of 7000 verb entries, we managed to correct over 
32% of LFs thus reducing the error rate to 24%. We worked then at manually correct-
ing those LFs that are marked as inconsistent by the parser, overall some 4000 entries. 
We corrected in this way 5.64% of errors that were signaled by the parser. Intervening 
in this way we discovered new mistakes that are due simply to specific type of struc-
tures, containing adjunct structures at verb level. This will require a new effort  to 
count these new mistakes and then manually check the remaining entries. We are also 
enriching semantically the logical forms, by two types of operations: signaling modi-
fiers' semantic nature as being either restrictive or non-restrictive, then intersective, 
non-intersective and anti-intersective. But also treating three-place predicates distin-
guishing closed arguments from predicative arguments. 
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Abstract. Previous neurocognitive approaches to word predictability from sen-
tence context in electroencephalographic (EEG) and eye movement (EM) data 
relied on cloze completion probability (CCP) data effortly collected from up to 
100 human participants. Here we test whether two well-established techniques 
in computational linguistics can predict these data. Together with baseline pre-
dictors of word position and frequency, we found that n-gram language models 
but not topic models provide an approach to EEG and EM data that is not sig-
nificantly inferior to the CCP-based predictability data. This is the case for the 
three corpora we used. Most strikingly, our models accounted for about half of 
the variance of the CCP-based predictability estimates, thus suggesting that it 
provides a computational framework to explain the predictability of a word 
from sentence context. This can help to generalize neurocognitive models to all 
possible novel word combinations. 

1 Introduction 

So far, manually collected cloze completion probabilities (CCPs) are typically 
used for quantifying a word’s predictability from sentence context in neurocognitive 
psychology (Kutas and Hillyard, 1984; Reichle et al., 2003). Here we tackle the ques-
tion whether the well-understood n-gram language models and Latent Dirichlet Allo-
cation (LDA) topic modeling (Blei et al., 2003) can account for CCPs, as well as 
whether they can provide an equally well-fitting approach to electroencephalographic 
(EEG) and eye movement (EM) measures, thus rendering time-consuming CCP pro-
cedures unnecessary. 

 CCPs have been traditionally used to account for N400 responses as an EEG sig-
nature of a word’s contextual integration into sentence context (Dambacher et al., 
2006; Kutas and Hillyard, 1984). Moreover, they were included as the quantification 
of the theoretical concept of predictability into models of eye movement control 
(Engbert et al., 2005; Reichle et al., 2003). However, because CCPs are effortly col-
lected from samples of up to 100 participants (Kliegl et al., 2004), they provide a 
severe challenge to the ability of a model to be generalized across all novel stimuli 
(Hofmann and Jacobs, 2014), which also prevents their use in technical applications. 
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To quantify how well computational models of word recognition can account for 
human performance, Spieler and Balota (1997) proposed that a model should explain 
variance at the item-level, for instance naming latencies, averaged across a number of 
participants. Therefore, a predictor variable is fitted to the mean word naming latency 
y as a function of   for a number of n predictor 
variables x that are scaled by a slope factor a, an intercept of b, and an error term. The 
Pearson correlation coefficient r is calculated, and squared to determine the amount of 
explained variance r2. Models with a larger number of n free parameters are more 
likely to (over-)fit error variance, and thus less free parameters are preferred (e.g., 
Hofmann and Jacobs, 2014). 
While the best cognitive process models can account for 40-50% of variance in be-
havioral naming data (Perry et al., 2010), neurocognitive data are noisier. The only 
interactive activation model that gives an amount of explained variance in EEG data 
(Barber and Kutas, 2007; McClelland and Rumelhart, 1981) was Hofmann et al. 
(2008), who account for 12% of the N400 variance. Though models of eye movement 
control use item-level CCPs as predictor variables (Engbert et al., 2005; Reichle et al., 
2003), they are rarely investigated in this field (Dambacher and Kliegl, 2007). 

While using CCP-data increases the comparability of many studies, the creation of 
such information is expensive and they only exist for a few languages (Kliegl et al., 
2004; Reichle et al., 2003). If it were possible to use (large) natural language corpora 
and derive the information leveraged from such resources automatically, this would 
considerably expedite the process of experimentation for under-resourced languages. 
Comparability would not be compromised when using standard corpora, such as 
available through Goldhahn et al. (2012) in many languages. However, it is not yet 
clear what kind of corpus is most appropriate for this enterprise, and whether there are 
differences in explaining human performance data. 

2 Related Work 

Taylor (1953) was the first to instruct participants to fill a cloze with an appropri-
ate word. The percentage of participants that fill in the respective word serves as cloze 
completion probability. For instance, when exposed to the sentence fragment ”He 
mailed the letter without a ￼___”, 99% of the participants complete the cloze by 
”stamp”, thus CCP equals 0.99 (Bloom and Fischler, 1980). Kliegl et al. (2004) logit-
transformed CCPs to obtain pred = ln(CCP/(1−CCP)).  

Event-related potentials are computed from human EEG data. For the case of the 
N400, words are often presented word-by-word, and the EEG waves are averaged 
across a number of participants relative to the event of word presentation. Because 
brain-electric potentials are labeled by their polarity and latency, the term N400 refers 
to a negative deflection around 400ms after the presentation of a target word. 

After Kutas and Hillyard (1984) discovered the sensitivity of the N400 to cloze 
completion probabilities, they suggested that it reflects the semantic relationship be-
tween a word and the context in which it occurs. However, there are several other 
factors that determine the amplitude of the N400 (Kutas and Federmeier, 2011, for a 
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review). For instance, Dambacher et al. (2006) found that word frequency (freq), the 
position of a word in a sentence (pos), as well as predictability does affect the N400. 

While the eyes remain relatively still during fixations, readers make fitful eye 
movements called saccades (Radach et al., 2012). When successfully recognizing a 
word in a stream of forward eye movements, no second saccade to or within the word 
is required. The time the eyes remain on that word is called single-fixation duration 
(SFD), which shows a strong correlation to word predictability from sentence context 
(e.g., Engbert et al., 2005).  

3 Methodology 

3.1 Human Performance Measures 

This study proposes that language models can be benchmarked by item-level per-
formance on three data sets that are openly available in online databases. Predictabil-
ity was taken from the Potsdam Sentence Corpus 1, first published by Kliegl et al. 
(2004). The 144 sentences consist of 1138 tokens, available in Appendix A of Dam-
bacher (2009), and the logit-transformed CCP measures of word predictability were 
retrieved from Ralf Engbert’s homepage1 (Engbert et al., 2005). For instance, in the 
sentence “Manchmal sagen Opfer vor Gericht nicht die volle Wahrheit” [Before the 
court, victims tell not always the truth.], the last word has a CCP of 1. N400 ampli-
tudes were taken from the 343 open-class words published in Dambacher and Kliegl 
(2007). These are available from the Potsdam Mind Research Repository2. The EEG 
data published there are based on a previous study (Dambacher et al., 2006, for meth-
od details). The voltage of ten centroparietal electrodes was averaged across 48 arti-
fact-free participants from 300 to 500ms after word presentation for quantifying the 
N400. SFD are based on the same 343 words from Dambacher and Kliegl (2007), 
available from the same source URL. Data were included when this word was only 
fixated for one time, and these SFDs ranged from 50 to 750ms. The SFD was aver-
aged across up to 125 German native speakers (Dambacher and Kliegl, 2007). 

3.2 N-gram Language and LDA Topic Models 

Language models are based on a probabilistic model of language. The resulting 
probabilities can be used to pick the most fluent of several alternatives e.g. in machine 
translation or speech recognition. Word n-gram models are defined by a Markov 
chain of order , where the probability of the following word only depends on 
previous  words. The probability distribution of the vocabulary, given a history 
of  words, is estimated based on n-gram counts from (large) natural language 
corpora. There exist a range of n-gram language models (see for example Chapter 3  
                                                           
1 http://mbd.unipotsdam.de/EngbertLab/Software.html 
2 http://read.psych.unipotsdam.de 
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in Manning and Schütze, 1999). Here, we use a Kneser and Ney (1995) 5-gram mod-
el3. For each word in the sequence, the language model computes a probability p ∈]0; 
1[. We use the logarithm log(p) of this probability as predictor. We used all words in 
their full form, i.e. did not filter for specific word classes and did not perform lemma-
tization. N-gram language models are known to model local syntactic structure very 
well. Since only n-gram models use the most recent history for predicting the next 
token, they fail to account for long-range phenomena and semantic coherence, cf. 
(Biemann et al., 2012). 

Latent Dirichlet Allocation (LDA) topic models (Blei et al., 2003) are generative 
probabilistic models representing documents as a mixture of a fixed number of N 
topics, which are defined as unigram probability distributions over the vocabulary. 
Through a sampling process like Gibbs sampling, topic distributions are inferred. 
Words frequently co-occurring in the same documents receive a high probability in 
the same topics. When sampling the topic distribution for a sequence of text, each 
word is randomly assigned to a topic according to the document-topic distribution and 
the topic-word distribution. We use Phan and Nguyen’s (2007) GibbsLDA implemen-
tation for training an LDA model with 200 topics (default values for α = 0.25 and β = 
0.001) on a background corpus. Words occurring in too many documents (a.k.a. 
stopwords) were removed from the LDA vocabulary. Then, we repeatedly sample the 
topic assignments (cf. Riedl and Biemann, 2012) on the input sentence and retain the 
most frequently assigned three topics per word. As predictor for the current open class 
word in the sequence, we count the number of previous open class words in the se-
quence, which have at least one topic in common with the current word. Intuitively, 
this measure should capture the amount of semantic coherence with the previous 
words in the sequence. I.e. for a sequence like ”The dwarf was avoiding the ____”, 
we’d expect a score of 1 for ”elves” for their topical similarity to ”dwarf” (provided 
that there is sufficient support of dwarves and elves in the background corpus), 
whereas we expect a score of 0 for ”rain”. Parameters of this procedure were deter-
mined in preliminary experiments. We hypothesized that topic models account for the 
semantic aspects missing in n-gram models. While Bayesian topic models are proba-
bly the most widespread approach to semantics in psychology (e.g., Griffiths et al., 
2007), latent semantic analysis (LSA) is not applicable in our setting (Landauer and 
Dumais, 1997): we use the capability of LDA to account for yet unseen documents, 
whereas LSA assumes a fixed vocabulary and document space at model construction 
time. In further experiments, we also used collocation statistics to predict semantically 
expected items, but we obtained no correlation with human data.  

4 Experiment Setup 

Engbert et al. (2005)’s data are organized in 144 short German sentences with an 
average length of 7.9 tokens, and provide features, such as freq as corpus frequency in 
occurrences per million (Baayen et al., 1995), pos, and pred. We test whether two 

                                                           
3 https://code.google.com/p/berkeleylm/ 
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corpus-based predictors can account for predictability, and compare the capability of 
both approaches in accounting for EEG and EM data. For training n-gram and topic 
models, we used three different corpora differing in size and covering different as-
pects of language. Further, the units for computing topic models differ in size. 

NEWS: A large corpus of German online newswire from 2009 as collected by 
LCC (Goldhahn et al., 2012) of 3.4 million documents / 30 million sentences / 540 
million tokens. This corpus is not balanced, i.e. important events in the news are cov-
ered better than other themes. The topic model was trained on the article level. 

WIKI: A recent German Wikipedia dump of 114,000 articles / 7.7 million sen-
tences / 180 million tokens. This corpus is rather balanced, as concepts or entities are 
described in a single article each, independent of their popularity, and spans all sorts 
of topics. The topic model was trained on the article level. 

SUB German subtitles from a recent dump of opensubtitles.org, containing 7420 
movies / 7.3 million utterances / 54 million tokens. While this corpus is much smaller 
than the others, it is closer to a colloquial use of language. Brysbaert et al. (2011) 
showed that word frequency measures of subtitles provide numerically greater corre-
lations with word recognition speed than larger corpora of written language. The topic 
model was trained on the movie level. 

Pearson’s product-moment correlation coefficient was calculated (e.g. Coolican, 
2010, p. 293), and squared for the N = 1138 predictability scores (Engbert et al., 
2005) or N = 343 N400 amplitudes or SFD (Dambacher and Kliegl, 2007). To address 
overfitting, we randomly split the material in two halves, and test how much variance 
can be reproducibly predicted on two subsets of 569 items. For N400 amplitude and 
SFD, we used the full set, because one half was too small for reproducible predic-
tions. 

5 Results 

5.1 Predictability results 

In the first series of results, we examine the correlation of manually obtained predict-
ability with corpus-based methods. High correlations would indicate that predictabil-
ity could be replaced by automatic methods. As a set of baseline predictors, we use 
pos and freq, which explains 0.243 / 0.288 of the variance for the first respectively the 
second half of the dataset. We report results in Table 1 for all single corpus-based 
predictors alone and in combination with the baseline, all combinations of the base-
line with n-grams and topics from the same corpus. 

 
predictors NEWS WIKI SUB 
n-gram alone .262/.294 .226/.253 .268/.272 
topic alone .024/.037 .029/.022 .014/.012 
base+n-gram .462/.490 .462/.490 .448/.459 
base+topic .252/.307 .254/.296 .244/.289 
base+both .481/.516 .445/.473 .449/.461 
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Table 1. r2 explained variance of predictability, given for two folds of the data set, for 
various combinations of baseline and corpus-based predictors. 

 
It is apparent that the n-gram predictor alone reaches r2 levels comparable to the 

baseline, whereas the topic model alone explains hardly any variance. Combining the 
baseline with the n-gram predictor achieves the best fitting to predictability for the 
WIKI and SUB corpora. Combining the baseline with topics shows small improve-
ments for NEWS and WIKI (see Figure 1). 

The best overall performance based on a single corpus is achieved with combining 
the baseline with n-grams and topics from the NEWS corpus. This confirms a gener-
ally accepted hypothesis that larger training data trumps smaller, more focused train-
ing data, see e.g. (Banko and Brill, 2001) and others. We also fitted a model based on 
all corpus-based predictors from all corpora, which achieved the overall highest r2= 
0.532 / 0.547 . From these experiments it becomes clear that predictability can largely 
be explained by a combination positional and frequency features combined with a 
word n-gram language model. Different corpora capture slightly different aspects of 
predictability, which is reflected by the improvements when combining predictors 
from all three corpora. The topic model-based predictor only shows a negligible influ-
ence. 

 

 
Fig. 1. Prediction models exemplified for the NEWS corpus in the x-axes and the N = 
1138 predictability scores on the y-axes. A) shows the prediction by baseline + n-
gram (r2=0.475), and in B) a topic-predictor was added (r2=0.481). Fisher’s r-to-z test 
revealed that there is no significant difference in explained variance (P=0.82) 

5.2 N400 and SFD results 

For modeling N400, we have even more combinations at our disposal since we can 
combine the baseline with predictability as given in the dataset, with corpus-based 
measures, and with both. We evaluate on all 343 data points for N400 amplitude fit-
ting. Without using corpus-based predictors, the baseline predicts a mere 0.032 of 
variance, predictability alone explains 0.192 of variance, and their combination ex-
plains 0.193 – i.e. the baseline is almost entirely subsumed by predictability. 

Fig. 2 lists the results for N400 amplitude modeling with corpus-based predictors. 
Again, the n-gram model is the best corpus-based predictor, and fares best when 
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trained on the NEWS corpus, confirming the result that corpus size is the major factor 
for n-gram model quality. For the N400 experiments, the difference between the lar-
ger corpora (NEWS, WIKI) and the smaller corpus (SUB) is more pronounced. 
Again, the topic predictor fails to show a major influence for explaining N400 ampli-
tude variance. The best combination without predictability, with a score of r2 = 0.182, 
comes close to the performance of predictability alone. 

 
predictors NEWS WIKI SUB 
n-gram alone 0.141 0.140 0.126 
topic alone 0.022 0.021 0.006* 
n-gram+topic 0.170 0.166 0.131 
base+n-gram 0.161 0.153 0.135 
base+topic 0.051 0.050 0.036 
bas+n-gram+topic 0.182 0.172 0.137 
base+pred+n-gram 0.223 0.226 0.206 
base+pred+topic 0.194 0.193 0.193 
base+pred+both 0.228 0.229 0.206  

 

Fig. 2. Left: r2 explained variance of N400 amplitude, for various combinations of 
baseline, predictability and corpus-based predictors. * marks statistically independent 
predictors of N400 (p > 0.05). Right: Two prediction models exemplified for the 
NEWS corpus in the x-axes and the N = 343 N400 amplitudes on the y-axes. A) 
shows the prediction by baseline + n-gram, and in B) predictability was added. 
Fisher’s r-to-z test revealed that there is no significant difference in explained vari-
ance (P=0.25) 
 

The experiments with predictability as an additional predictor confirm the results 
from the previous section: n-grams + baseline and predictability capture slightly dif-
ferent aspects of human reading performance, thus their combination explains about 
3% more variance than predictability alone. This difference, however, is not statisti-
cally reliable (see Figure 2). Differences between the two large corpora are negligible, 
and so is the influence of the topic-based predictor. 
Finally, we examine the corpus-based predictors for modeling the mean single fixa-
tions duration for 343 words. For this target, the pos+freq baseline explains r2 = 
0.021, whereas predictability, alone or combined with the baseline, explains r2 = 
0.184. 
 

predictors NEWS WIKI SUB 
n-gram alone 0.225 0.140 0.126 
topic alone 0.006* 0.006* 0.006* 
n-gram+topic 0.231 0.223 0.226 
base+n-gram 0.239 0.226 0.226 
base+topic 0.023 0.024 0.029 
bas+n-gram+topic 0.242 0.230 0.229 
base+pred+n-gram 0.273 0.274 0.258 
base+pred+topic 0.188 0.184 0.184 
base+pred+both 0.273 0.274 0.259  

 

Fig. 3. Left: r2 explained variance of single-fixation duration, for various combina-
tions of baseline, predictability and corpus-based predictors. * marks statistically 
independent predictors of SFD (P > 0.05). Right: Two prediction models exemplified 
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for the NEWS corpus in the x-axes and the N = 343 SFD on the y-axes. A) shows the 
prediction by baseline + n-gram, and in B) predictability was added. Fisher’s r-to-z 
test revealed that there is no significant difference in explained variance (P=0.56) 

 
The experiments confirm the utility of n-gram models in accounting for eye 

movement data. Adding predictability did not lead to a significant increase of vari-
ance explained (see Fig. 3). In addition, the n-gram model alone explains more vari-
ance than predictability – however, the difference is not significant. 

For SFD, corpus size does not seem to be a major influencing factor, as results are 
comparable across corpora, however with the largest corpus (NEWS) still yielding the 
best modeling results overall in absence of the predictability predictor. For SFD, topic 
models seem entirely uncorrelated. 

And again, the experiments confirm that n-gram models and predictability capture 
similar, but slightly different aspects, since their combination yields another im-
provement, explaining r2 = 0.273 overall. 

6 Conclusion 

We have examined the utility of two corpus-based predictors to account for word 
predictability from sentence context, as well as the EEG signals and EM-based read-
ing performance elicited by it. Our hypothesis was that word n-gram models and topic 
models would account for the predictability of a token, given the preceding tokens in 
the sentence, as perceived by humans. Our hypothesis was at least partially con-
firmed: n-gram models, sometimes in combination with a frequency-based and posi-
tional baseline, are highly correlated with human predictability scores and in fact 
explain variance of human reading performance to an extent comparable to predict-
ability – slightly less on N400 but slightly more on SFD.  

Topic models on the other hand, at least in the particular way we used them here, 
failed to show a major influence on modeling human reading performance. This might 
be related to the fact that the sentence scope in the data set is rather short so that most 
“priming” effects can already be captured by our 5-gram model – topic models usu-
ally perform well on the level of documents, not single sentences. 

Can we now safely replace human predictability scores with n-gram statistics? 
Given the high correlation between predictability and the combination of n-grams 
with frequency and positional information, and given that n-gram-based predictors 
achieve similar levels of explained variance than predictability, the answer seems to 
be positive. However, though our corpus-based approaches explain most of the vari-
ance that by manually collected CCP scores also account for, adding predictability 
always accounts for more variance – though this difference is not significant (see 
Figures 1-3). It is yet an open question, whether additional corpus-based predictors, 
be it topic models or something else, could entirely explain the prediction power of 
human CCP data for tasks like N400 amplitude and SFD modeling. 

While n-gram models together with word frequency and position captured about 
half of the predictability variance, and most of the N400 and SFD variance elicited by 
it, we propose that it can be used to replace tediously collected CCPs. This not only 
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saves a lot of pre-experimental work, but it also opens the possibility to apply (neuro-) 
cognitive models in technical applications. For instance, n-gram models can be used 
to generalize computational models of eye movement control to novel sentences 
(Engbert et al., 2005; Reichle et al., 2003).  

In the end, this will also improve our understanding of the cognitive processes un-
derlying EM and EEG measures. While both of these are not as well understood as 
human CCP performance, predictability provided a great step towards understanding 
the determinants of neurocognitive prediction processes. If we can compute the de-
terminants of N400 and SFDs from a corpus of sentences, however, we can computa-
tionally define these cognitive processes rather than using a better-understood per-
formance (CCP) to account for other human performance (N400, SFD). 

Baayen (2010) proposed word frequency to be a collector variable often subsuming 
other highly correlated variables. We found that adding n-grams to the baseline of pos 
and freq doubled the explained variance in CCP-based predictability scores. This 
suggests that the sentence level can unfold the cognitive processes previously ascribed 
to word frequency. The doubling of explained variance suggests still unexploited 
sources of human variance to be explained by neurocognitive simulation models, 
which quantify the contextual constraints imposed by position-sensitive predictions of 
a sentence’s words (e.g. Hofmann & Jacobs, 2014; Kutas & Federmeier, 2011).  

Much as for computational models of word recognition, the amount of explained 
item-level variance can serve as a benchmark for language models. Such a common 
benchmark facilitates the comparison of differential computational models. Thus, for 
instance, we would not only know that Frank et al. (2013)’s novel language model 
can account for the N400, but the common benchmark of explained variance could be 
easily compared to any novel approach – for instance by assessing whether one meas-
ure is significantly better than another one for the purpose of modeling.  
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Abstract. Data-driven parsers rely on recommendations from parse models, 
which are generated from a set of training data using a machine learning 
classifier, to perform parse operations. However, in some cases a parse 
model cannot recommend a parse action to a parser unless it learns from the 
training data what parse action(s) to take in every possible situation. There-
fore, it will be hard for a parser to make an informed decision as to what 
parse operation to perform when a parse model recommends no/several parse 
actions to a parser. Here we examine the effect of various deterministic 
choices on a data-driven parser when it is presented with no/several recom-
mendation from a parse model. 

1 Introduction 

One of the main components of a data-driven parser is a parse model, which rec-
ommends parse operations to a parser when processing sentences. It is not guaranteed 
that a parse model can cover every possible situation during parsing and hence it may 
be unable to recommend a parse operation or it may recommend several operations in 
a given situation. Therefore, when a parse model recommends no/several operations 
to a parser, it will be hard for the parser to determine what operation to perform. In 
Section 3 we will describe a basic shift-reduce parser while in Section 4 we will de-
scribe our parser. In Section 6 we will identify several deterministic choices that a 
data-driven shift-reduce parser may take. We will examine the effect of these deter-
ministic choices on the parsing performance in terms of efficiency and accuracy. In 
Section 8.1, we will examine the effect of various deterministic choices when running 
our parser deterministically, and in Section 8.2 we will examine the effect of the de-
terministic choices on our parse when running it non-deterministically. 

2 Dataset 

We have used the Penn Arabic Treebank (PATB) (Maamouri and Bies, 2004) part 
1 version 3 for training and testing our dependency data-driven parser, which is a re-
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implementation of the arc-standard version of MaltParser (Nivre et al., 2010; 
Kuhlmann and Nivre, 2010; Nivre et al., 2006). We have converted the phrase struc-
ture trees of the PATB to dependency structure trees using the standard conversion 
algorithm for transforming phrase structure trees to dependency trees, as described by 
Xia and Palmer (2001). In order to perform a 5-fold validation, we have systemati-
cally generated five sets of testing data and five sets of training data from the tree-
bank, where the testing data is not part of the training data. The training data contains 
approximately 3853 sentences. The average length of sentences is 29 words and the 
total number of testing sentences in each fold is about 970 sentences. 

3 A Shift-reduce Parser 

A basic shift-reduce parsing algorithm performs one out of three operations at any 
parse transitions: SHIFT, LEFT-ARC or RIGHT-ARC. These operations are applied 
to a queue of words which have not yet been looked at and a stack of words which 
have been inspected but have not yet been assigned a syntactic role.  

The SHIFT operation moves the head of the queue to the top of the stack. The 
LEFT-ARC and RIGHT-ARC operations establish head-dependent relations (in de-
pendency parsing) between the head item of the queue and the top item on the stack. 
The LEFT-ARC and the RIGHT-ARC operations are applied to one node in a queue 
of input strings and one node on the stack. The LEFT-ARC operation makes the first 
node in the queue the parent of the top node on the stack while the RIGHT-ARC op-
eration makes the top node on the stack the parent of the first node in the queue and 
rolls back the item on the top of the stack to the queue.  

Our parser implementation is similar to the arc-standard algorithm of MaltParser 
(Kuhlmann and Nivre, 2010), which takes a deterministic approach to parsing natural 
language text where a support vector machine (SVM) (Chang and Lin, 2001) classi-
fier is used for learning parse operations from a dependency treebank. The classifier 
helps the parser to predict the most likely correct parse operation when it is presented 
with a non-deterministic choice between multiple parse operations. As Nivre (2008) 
states, in this kind of implementation the parser derives a single parse analysis by 
incrementally selecting a parse operation, which makes the parsing process very sim-
ple and efficient. Moreover, by using an appropriate classifier, a good parsing accu-
racy is achievable (Nivre, 2008, p. 514). 

The original arc-standard algorithm uses a deterministic approach to parsing 
natural language texts. The parser follows suggestions made by a parse model to per-
form a specific parse action (SHIFT, LEFT-ARC, or RIGHT-ARC) at each parse 
step. Performing the wrong parse action at a particular step during parsing will have a 
knock on effect on subsequent parsing steps. Hence, the error propagation can be 
substantial. Using a non-deterministic approach, where the parser is presented with 
multiple actions to take, allows the parser to recover from a previous mistake if this is 
subsequently identified. 
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4 DNDParser 

Our parser contrasts with MaltParser in the way it is non-deterministic but with 
some deterministic features. We will call our parser DNDParser, which is short for 
deterministic and non-deterministic dependency data-driven parser. At each parse 
step, we generate a state for SHIFT, LEFT-ARC, and RIGHT-ARC, and we will as-
sign different scores to each state. The score of each state is computed by using two 
different scores: (i) a score that is based on the recommendation made by the parse 
model. For example, we give a score of 1 for a SHIFT operation if it is recommended 
by the parse model, otherwise we give it a score of 0 (and the same applies to LEFT-
ARC and RIGHT-ARC). (ii) We add the score from (i) to the score of the current 
state (which is the state that the new parse state is generated from). The sum of these 
two scores is assigned to the newly generated parse state(s). We can rank a collection 
of parse states by using their scores and then process the state with the highest score, 
which we consider the most plausible state. The various states generated by our 
parser is described in the following section. 

5 Assigning Scores to Parse States 

We extend the LEFT-ARC and RIGHT-ARC operations of the shift-reduce algo-
rithm to allow more variations of the reduce operations, such as LEFT-ARC(n) and 
RIGHT-ARC(n) where n is any positive numbers. In this way, our parser generates 
one or more parse states from a given state based on following situations: 
 

• If the queue consists of one or more items and the stack is empty then 
the parser produces one state by performing SHIFT. For example, if 
the queue consists of items such as [1, 2, 3, 4] and an empty stack 
such as [] then the parser cannot recommend LEFT-ARC(n) or 
RIGHT-ARC(n) because these two operations require an item on the 
stack to be made the parent or the daughter of the head of the queue 
respectively 

• If the queue consists of one or more items such as [2, 3, 4] and the 
stack consists of one item only such as [1], then there are three possi-
ble moves: SHIFT, LEFT-ARC(1), and RIGHT-ARC(1). However, 
the parse model, which is based on a classification algorithm, will 
recommend only one operation (SHIFT, LEFT-ARC(1), or RIGHT-
ARC(1)). Hence, in this kind of state our parser generates three states 
but only one state will be given a positive score, which is based on 
recommendation of the parse model. 

• If the queue consists of one or more items such as [3, 4] and the stack 
consists of more than one item such as [2, 1], then our parser may 
generate more than three states because it checks for relations be-
tween the head of the queue and any items on the stack; i.e., states 
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that are generated by LEFT-ARC(n+1) and RIGHT-ARC(n+1). This 
approach is a generalisation of proposals by Kuhlmann and Nivre 
(2010) and Attardi (2006). 

 
We store the states with various scores in an agenda sorted based on their scores, 

and the state with the highest score is explored by the parser. 
 

6 Classification-driven Deterministic Parsing 

During some parse transitions, DNDParser may be forced to make deterministic 
decisions. As explained in the previous section, if the parser is presented with a state 
that has one or more items on the queue but an empty stack then it will produce one 
state by performing SHIFT. For example, having a queue with [1, 2, 3, 4] and an 
empty stack [] then the parser cannot recommend LEFT-ARC or RIGHT-ARC be-
cause both of these two operations requires an item from the stack to be made the 
parent or the daughter of the head of the queue. 

Having one or more items on the queue and one item on the stack the parser pro-
duces three states, namely: SHIFT, LEFT-ARC, and RIGHT-ARC. In this kind of 
situation, the parsing model recommends only one operation where we give it a posi-
tive score so that the parser can then explore the recommended operation. However, it 
is possible that the parse model may not recommend any operations if it is presented 
with a situation that has never seen it during training. This is possible because the 
classifier may not learn what action to take in every situation the parser encounters 
during the testing phase. For example, in Fig. 1 we assume that the parse model did 
not recommend any operation, where all three operations receive a score of 0, and 
thus they will all have equal scores (which is the score inherited from the original 
state). 

 
States Operations Queue Stack Scor

e 
Current state - [2, 3, 4] [1] 0 
New states SHIFT [3, 4] [2, 1] 0 
 RIGHT-ARC(1) [1, 3, 4] [] 0 
 LEFT-ARC(1) [2, 3, 4] [] 0 

 
Fig. 1. Generating three parse states from one state 

 
In this kind of situation, it is not clear which operation the parser should explore 

first, LEFT-ARC(1), RIGHT-ARC(1) or SHIFT. There are six different deterministic 
strategies (order-of-preference) we can give to the parser as to which operation it 
should explore first, those are: 

 
1. SHIFT-LEFT-ARC-RIGHT-ARC 
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2. SHIFT-RIGHT-ARC-LEFT-ARC 
3. LEFT-ARC-SHIFT-RIGHT-ARC 
4. LEFT-ARC-RIGHT-ARC-SHIFT 
5. RIGHT-ARC-SHIFT-LEFT-ARC 
6. RIGHT-ARC-LEFT-ARC-SHIFT 

 
Furthermore, in situations where the parser is presented with a state that has one 

or more items on the queue and more than one items on the stack, the parser can then 
generate more than three states because it checks for relations between the head of the 
queue and any items on the stack; i.e., states that are generated by LEFT-ARC(n+1) 
and RIGHT-ARC(n+1). In this kind of situation, it is possible that two or more opera-
tions may be recommended by the parse model, where two or more states receive 
positive scores. For example, in Fig. 2 where the parsing rules suggested LEFT-
ARC(1) (making 3 from the queue the parent of 2 on the stack) and also LEFT-
ARC(2) (making 3 the head of the queue the parent of 1 from the stack) they are both 
given a score of 1. 

 
States Operations Queue Stack Tree Scor

e 
Current state - [3, 4] [2, 1] - 0 
New states SHIFT [4] [3, 2, 1] - 0 
 RIGHT-ARC(1) [2, 4] [1] (2>3) 0 
 RIGHT-ARC(2) [1, 2, 4] [] (1>3) 0 
 LEFT-ARC(1) [3, 4] [1] (3>2) 1 
 LEFT-ARC(2) [2, 3, 4] [] (3>1) 1 

 
Fig. 2. Generating more than three parse states from one state 

 
In this kind of exemplified situation we may deterministically choose to perform 

LEFT-ARC(1) instead of LEFT-ARC(2), by giving more priority to reduce opera-
tions that involve two items that are closer to each other. Alternatively, we may de-
terministically choose LEFT-ARC(2), by giving priority to reduce operations that 
involve two items that are further away from each other. This leads to another two 
different deterministic choices, which are: 

 
1. furthest-item-first: this operation involves making relations between the 

head of the queue and an item that is furthest away from it on the stack. 
2. closest-item-first: this operation involves making relations between the 

head of the queue and an item on the stack that is closest to it on the 
stack. 

 
We can run the parser deterministically by allowing it to accept the first terminal 

state that it produces, which is a state where there are no possible actions for the par-
ser to take (i.e. if the queue is empty).  
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7   Classification-driven Non-deterministic Parsing 

Running our parser completely deterministic, then we allow it to accept the first 
terminal state it produces (whether a well-formed tree is produced); i.e., when the 
queue becomes empty because processing of all the words in it is performed by re-
moving queue items on to the stack. If we run the parser non-deterministically, we 
allow it to explore the alternative states that remain on the agenda if the first terminal 
state is not well-formed; i.e., where the stack has more than one item on it, which 
means that some words did not receive a parent and hence a complete parse tree is not 
produced. This means that the parser rolls back to the previous highest scored state on 
the agenda and explores it until a state is generated whereby the stack contains one 
item and a complete parse tree is generated. 

8   Evaluation 

In this section, we will present our evaluation of the deterministic and non-
deterministic versions of DNDParser. We show three different parsing accuracy 
measures, those are: (i) Labelled Attachment Scores (LAS), which is the percentage 
of the correct dependency relations with the correct labels of the dependency relations 
(DEPREL) between tokens; (ii) Unlabelled Attachment Score (UAS), which is the 
percentage of correct dependency relation (i.e., the percentage of tokens with correct 
heads) regardless of the DEPREL; and (iii) Labelled Accuracy (LA) which is the per-
centage of tokens with the correct dependency label. The efficiency of the parser is 
also presented, which is amount of time in seconds the parser consumes for establish-
ing a dependency relation between two words. 

8.1 Deterministic Parser Evaluation with Various Deterministic Choices 

In this section we will evaluate DNDParser by running it completely determinis-
tic. In deterministic mode, the parser accepts the first terminal state it produces re-
gardless of whether the state contains a complete parse tree for a given sentence. 
Moreover, we present results for the various deterministic strategies, which we out-
lined in Section 6. We can observe from Table 1 that from the six deterministic order-
of-preferences, the LEFT-ARC-SHIFT-RIGHT-ARC strategy produces the highest 
parsing accuracy.  

We can also observe that the LEFT-ARC-SHIFT-RIGHT-ARC order-of-
preference produces higher parsing accuracy when combined with the furthest-item-
first reduction strategy than when it is combined with the closest-item-first reduction 
strategy. However, combining the LEFT-ARC-SHIFT-RIGHT-ARC order-of-
preference with the furthest-item-first reduction strategy degrades the parsing effi-
ciency by about 7% compared with when it is combined with the closest-item-first 
reduction strategy. 
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Table 1. Deterministic parsing evaluation 
 

Furthest-item-first reduction 
Strategy UAS (%) LAS (%) LA (%) Efficiency 
LEFT-ARC-SHIFT-RIGHT-ARC  72.48 70.63 93.6 0.062 
SHIFT-LEFT-ARC-RIGHT-ARC  59.77 58.12 72.1 0.047 
SHIFT-RIGHT-ARC-LEFT-ARC  59.41 57.76 71.7 0.067 
RIGHT-ARC-LEFT-ARC-SHIFT  53.67 52.25 87.8 0.043 
LEFT-ARC-RIGHT-ARC-SHIFT 53.67 52.25 87.8 0.042 
RIGHT-ARC-SHIFT-LEFT-ARC 53.27 52.15 87.8 0.041 

 
Closest-item-first reduction 

Strategy USA (%) LAS (%) LA (%) Efficiency 
LEFT-ARC-SHIFT-RIGHT-ARC  66.46 64.72 92.6 0.058 
SHIFT-LEFT-ARC-RIGHT-ARC  59.76 58.05 73.4 0.035 
SHIFT-RIGHT-ARC-LEFT-ARC  59.58 57.87 73.3 0.41 
RIGHT-ARC-SHIFT-LEFT-ARC 52.62 51.18 87.7 0.037 
RIGHT-ARC-LEFT-ARC-SHIFT  51.35 49.96 87.7 0.030 
LEFT-ARC-RIGHT-ARC-SHIFT  51.15 49.26 87.5 0.032 

8.2 Non-deterministic Parser Evaluation with Various Deterministic Choices 

In this section we will evaluate our parser by running it non-deterministically. In 
this mode, the parser explores other states until it finds a well-formed terminal state, 
which is a state where the stack contains one item and a complete parse tree is gener-
ated. We run the parser in this mode by integrating various deterministic strategies 
that we outlined in Section 6. We can note from Table 2 that from the six determinis-
tic order-of-preferences (see Section 6 for more detail), the SHIFT-LEFT-ARC-
RIGHT-ARC order-of-preference produces the highest parsing accuracy. We can also 
observe that the SHIFT-LEFT-ARC-RIGHT-ARC order-of-preference produces 
higher parsing accuracy when combined with the furthest-item-first reduction strategy 
than when it is combined with the closest-item-first reduction strategy. However, 
combining the SHIFT-LEFT-ARC-RIGHT-ARC strategy with any of the two strate-
gies (furthest-item-first reduction or closest-item-first reduction) the speed of the 
parse is not largely affected (about 2.4%).  

It appears that using different settings affects the performance of the parser 
greatly. From the experiments conducted in this section, and the previous section, it is 
apparent that running the parser non-deterministically with SHIFT-LEFT-ARC-
RIGHT-ARC order-of-preference and using the furthest-item-first reduction strategy 
produces the best parsing performance.  

 
 
 
 



S. Jaf, A. Ramsay 102 

Table 2. Non-deterministic parsing evaluation with different deterministic choices 
 

Furthest-item-first reduction 
Strategy UAS (%) LAS (%) LA (%) Efficiency 
SHIFT-LEFT-ARC-RIGHT-ARC  74.5 71.0 93.6 0.081 
LEFT-ARC-SHIFT-RIGHT-ARC 72.6 70.7 92.0 0.072 
SHIFT-RIGHT-ARC-LEFT-ARC  57.5 55.8 88.1 0.074 
RIGHT-ARC-LEFT-ARC-SHIFT  53.6 52.2 87.9 0.060 
LEFT-ARC-RIGHT-ARC-SHIFT 53.6 52.2 87.9 0.059 
RIGHT-ARC-SHIFT-LEFT-ARC 53.6 52.2 87.9 0.060 

 
Closest-item-first reduction 

Strategy UAS (%) LAS (%) LA (%) Efficiency 
SHIFT-LEFTA-RC-RIGHT-ARC  70.75 68.95 91.0 0.079 
LEFT-ARC-SHIFT-RIGHT-ARC  66.48 64.74 90.7 0.058 
SHIFT-RIGHT-ARC-LEFT-ARC  57.01 55.27 88.1 0.077 
RIGHT-ARC-LEFT-ARC-SHIFT  52.55 51.11 87.8 0.056 
LEFT-ARC-RIGHT-ARC-SHIFT 51.34 49.96 87.8 0.052 
RIGHT-ARC-SHIFT-LEFT-ARC 51.34 49.96 87.8 0.051 

9  Summary 

Parse models are one of the main elements of data-driven parsers. They are used 
for guiding parsers during the processing of natural languages. However, it is possi-
ble that parse models may recommend no/several parse operations to a parser in a 
given situation. When parse models recommend no/several parse operations it is dif-
ficult for a parser to determine what operation to perform. Therefore, they are allowed 
to make deterministic choices. In this paper, we have identified several deterministic 
choices that a parser may take when it is presented with no/several parse operations, 
which are recommended by a parse model. We have observed and examined the ef-
fect of each deterministic choice on the performance of a data-driven parser, which is 
based on the shift-reduce algorithm. We have identified that each deterministic choice 
affects the parsing performance in different ways. Some choices affect accuracy while 
other choices affect efficiency. 
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Abstract. In this paper we present SABRINA (Sentiment Analysis: a Broad Re-
source for Italian Natural language Applications) a manually annotated prior 
polarity lexical resource for Italian natural language applications in the field of 
opinion mining and sentiment induction. The resource consists in two different 
sets, an Italian dictionary of more than 277.000 words tagged with their prior 
polarity value, and a set of polarity modifiers, containing more than 200 words, 
which can be used in combination with non neutral terms of the dictionary in 
order to induce the sentiment of Italian compound terms. To the best of our 
knowledge this is the first prior polarity manually annotated resource which has 
been developed for the Italian natural language. 

1 Introduction 

The preparation of manuscripts which are to be reproduced by photo-offset re-
quires special care. Papers submitted in a technically unsuitable form will be returned 
for retyping or cancelled if the proceedings cannot otherwise be finished on time.  
Sentiment classification, described in Bing and Lei (2012), Liu and Zhang (2012) and 
Medhat et al. (2014), concerns the use of automatic approaches for predicting the ori-
entation of subjective content on text documents, with applications on many areas 
including information retrieval, customer intelligence and recommender and advertis-
ing systems.  

Such discipline, where sentiment, opinion or emotion, are identified and classified 
in human written text is well known as sentiment analysis. 

With the rapid increase of available subjective text on the internet in the form of 
blog posts, comments in discussion forums and product reviews, mining the user’s 
opinion can assist in a lot of potential applications in areas such as recommender sys-
tems, search engines and market research. 
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Although some attempts have been made to extend solutions to other languages, 
till date all research efforts found in sentiment analysis literature deal mostly with 
English texts. However, in order to identify sentiment from a text, a lexical analysis of 
the source language plays a crucial role. 

An approach for detecting sentiment in texts concerns the use of lexical resources  
such as a dictionaries of opinionated terms. For example the terms love , good  and 
favorite directly indicate a positive sentiment or an opinion, while words like hate , 
bad and scandal  can be associated with a negative sentiment. 

Among the others, SentiWordNet, by Esuli and Sebastiani (2006), is one of the 
most used resource, containing opinion information on terms extracted from the 
WordNet database by Miller (1995) and made publicly available for research pur-
poses. It is built via a semi supervised method and is considered a valuable resource 
for performing opinion mining tasks, providing a readily available database of term 
sentiment information for the English language. 

Other previous works, as Pang and Lee (2002) and Esuli and Sebastiani (2006), 
have been already proposed for making dictionaries for those sentiment words using 
automatic approaches, however automatic identification of  polarity orientation of 
such words is also a difficult research issue, known as polarity identification . In this 
context, it has been shown that the use of sentiment lexicons only provide a good 
baseline i.e. without using any natural language techniques only dictionary based ap-
proach produce a good performance, as noticed in Das and Bandyopadhyay (2010b). 

An alternative to automatic tagged resources are manually annotated lexicons 
which turns out to be undoubtedly more trustable although they took long time to be 
constructed and may be subject it annotator bias. 

In this paper we present SABRINA (Sentiment Analysis: a Broad Resource for Ital-
ian Natural language Applications) a manually annotated prior polarity lexical re-
source for Italian natural language applications in the field of opinion mining and 
sentiment induction. The resource consists in two different sets, an Italian dictionary 
of more than 277.000 words tagged with their prior polarity value, and a set of polar-
ity modifiers, containing more than 200 words, which can be used in combination 
with non neutral terms of the dictionary in order to induce the sentiment of Italian 
compound terms. To the best of our knowledge this is the first prior polarity manually 
annotated resource which has been developed for the Italian natural language. 

The paper is organized as follows. In Section 2 we introduce the concept of prior 
and posterior polarity and present some known lexicons which label terms with their 
sentiment polarity. Then in Section 3 we present the new tagged resources which has 
been created for the Italian language and discuss its properties. In Section 4 we briefly 
introduce also a web based fronted for accessing the resources. We draw our conclu-
sions in Section 5. 

2 Prior and Posterior Polarity 

We would like to stress that the template should not be manipulated and that the 
guidelines regarding font sizes and format should be adhered to. This is to ensure that 
the end product is as homogeneous as possible. 
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A typical computational approach to sentiment analysis starts with prior polarity 
lexicons where entries are tagged with their prior out of context polarity as human 
beings perceive using cognitive knowledge. 

The prior polarity  of a term is the sentiment (positive or negative) that such word 
evokes by itself. More specifically we could define the prior polarity of a term as the 
polarity for its non-disambiguated meaning, out of any context. 

For example the adjective cold  evokes (in most cases) a fairly negative sentiment, 
since it is used in sentences as a cold man , a cold winter  or I feel cold . However, 
depending on the context, we can find such term in sentences with a positive accepta-
tion, as in I love cold beer. 

In contrast with the prior polarity of a word, the polarities associated to each word 
sense is called in literature posterior polarity. 

In most cases prior polarity lexicons are lists of positive and negative words, often 
deployed as baselines or as features for other methods for sentiment analysis research, 
as in Liu and Zhang (2012). In these lexicon, words are associated with their prior 
polarity. For example it is presumable that the term wonderful  is associated with 
positive connotation while the term horrible  is associated with negative one. These 
approaches have the advantage of not needing deep semantic analysis or word sense 
disambiguation to assign an affective score to a word and are domain independent. In 
other word they are less precise but more portable. 

2.1 Polarity Lexicons  

Opinion lexicons are resources that associate sentiment orientation and words. 
Their use in opinion mining research stems from the hypothesis that individual words 
can be considered as a unit of opinion information, and therefore may provide clues to 
document sentiment and subjectivity. These techniques could be broadly categorized 
in two genres: manual annotation and automatic extraction of word polarity. 
 

Manual annotation. Manual annotated lexicons are undoubtedly trustable but it 
took long time and, for these reasons, tend to be constrained to a small number of 
terms. By its nature, building manual lists is a time consuming effort, and may be 
subject to annotator bias. Although such limitations manually created opinion 
lexicons were applied to sentiment classification as seen in Pang et al. (2002), 
where a prediction of document polarity is given by counting positive and nega-
tive terms. 

 
Automatic detection. To overcome the above issues lexical induction approaches 
have been proposed in the literature with a view to extend the size of opinion 
lexicons from a core set of seed terms, either by exploring term relationships, or 
by evaluating similarities in document corpora. Early work in this area, by Hat-
zivassiloglou and McKeown (1997), extends a list of positive and negative adjec-
tives by evaluating conjunctive statements in a document corpus. However in 
most cases automatic processes still demands manual validations and, moreover, 
may fail to cover the multiple domains as automatic processes trust on specific 
corpus. 
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SentiWordNet, by Esuli and Sebastiani (2006),  is one of the most popular lexical 
resources in Sentiment Analysis. It has been widely adopted since it provides a broad-
coverage lexicon, built in a semi-automatic manner, for English providing posterior 
polarities scores for each term of the language. It is the result of the automatic annota-
tion of all the synsets of WordNet according to the notions of positivity, negativity, 
and neutrality. Different senses of the same term may thus have different opinion-
related properties. 

However in most opinion mining applications it is necessary to derive prior polari-
ties starting from posterior polarities scores have been proposed in the literature. 
However, their performance varies significantly depending on the adopted variant. 
For instance SentiWords is an inducted prior polarity lexicon with the higher coverage 

for the English language. It contains roughly 155.000 words associated with a sen-
timent score included between -1  (strongly negative) and +1  (strongly positive), 
learned from SentiWordNet. Words in this resource are also aligned with WordNet 
lists. For the sake of completeness we notice also that other prior polarity sentiment 
lexicons are available for the English language, such as Subjectivity Word List, in 
Wilson et al. (2005), Word-Net Affect list, in Strapparava and Valitutti (2004), and the 
Taboada’s adjective list, in Voll and Taboada (2007). 

Although most of the efforts in literature have been devoted to the construction on 
lexicons resource for the English language, in recent years some research endeavors 
could be found in literature for solving the opinion mining problem in several lan-
guages and domains as in Das and Bandyopadhyay (2010b). Until date most of the 
approaches to sentiment analysis in languages different from English consists in ap-
plying a word-translation from the target language to English before polarity extrac-
tion, which is applied by using one of the above described lexicons. Such solutions, 
however, presents several problems including translation precision and disambigua-
tion of words. 

Recently some efforts have also been made to produce polarity lexicons for lan-
guages different from English. For instance Das and Bandyopadhyay (2010a) pro-
posed multiple computational techniques like, WordNet based, dictionary based, cor-
pus based or generative approaches for generating SentiWordNet for Indian lan-
guages. 

For the sake of completeness we mention also an interactive gaming approach used 
for obtaining polarity values of english words, presented by Das and Bandyopadhyay 
(2010b) who proposed a tool, named Dr. Sentiment, to create and validate Senti-
WordNet in 56 languages by involving Internet population. 

3 New Broad Lexical Resources for the Italian Language 

In this section we present SABRINA1 (Sentiment Analysis: a Broad Resource for 
Italian Natural language Applications) a manually annotated prior polarity lexical 
resource for Italian natural language applications in the field of opinion mining and 

                                                 
1 A tool for evaluating SABRINA is available at the anonymous url 
http://www.dmi.unict.it/~faro/sabrina. 
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sentiment induction. The resource consists in two different sets, an Italian dictionary 
of more than 277.000 words tagged with their prior polarity value, and a set of polar-
ity modifiers, containing more than 200 words, which can be used in combination 
with non neutral terms of the dictionary in order to induce the sentiment of Italian 
compound terms. 

In recent years sentiment analysis in Italian texts has attracted attention due to 
Evalita, an initiative devoted to the evaluation of Natural Language Processing and 
Speech tools for Italian. In the recent Evalita 2014 edition the Sentipolc (SENTIment 
POLarity Classification) task2 was proposed by Basile et al. (2014). It focused on 
Italian texts from Twitter by launching a battery of related tasks with an increasing 
level of complexity.  

A first automatic annotated lexicon for the Italian language has been developed by 
Basile and Nissim (2013), who exploited three existing resources, namely Multi-
WordNet by Ciravegna et al. (1994), SentiWordNet by Esuli and Sebastiani (2006), 
and WordNet, by Miller (1995), to obtain an annotated lexicon of senses for Italian. 

It was named Sentix and basically port the SentiWordNet annotation to the Italian 
portion of MultiWordNet in a completely automatic fashion. Sentix was then used by 
Castellucci et al. (2014) who described the UNITOR system that participated to the 
Sentipolc task within the context of Evalita 2014.  

The system has been developed as a workflow of Support Vector Machine classifi-
ers. Specific features and kernel functions have been used to tackle the different sub-
tasks, i.e. Subjectivity Classification, Polarity Classification and the pilot task Irony 
Detection. To the best of our knowledge, besides Sentix, SABRINA is the first prior 
polarity manually annotated resource which has been developed for the Italian natural 
language. 

 

Table 1.  The distribution of polarity values assigned to Italian words 
 

polarity value # of words % of words 

strongly negative -1.0 22.651 8.17% 

negative -0.5 49.074 17.70% 

neutral +0.0 162.170 58.47% 

positive +0.5 36.688 13.23% 

strongly positive +1.0 6.739 2.43% 

                                                 
2 http://www.di.unito.it/~tutreeb/sentipolc-evalita14/ 
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Fig. 1. The polarity distribution of the 277.387 different words of the Ispell Italian 
dictionary. Words are tagged with five different polarity values between -1 and +1 

3.1 Italian Polarity Lexicon 

Most sentiment lexicons in literature contain lists of tagged lemmas, i.e. the ca-
nonical form ( or dictionary form) of a word. For instance the lastest version of Mul-
tiWordNet (1.39) contains around 58,000  Italian word senses and 41,500  lemmas 
organized into 32,700  synsets aligned whenever possible with Princeton WordNet 
English synsets. In using such kind of resources in sentiment analysis it is necessary 
to operate a previous step of sense disambiguation in order to identify the correspon-
dent lemma of a word. 

Our lexicon contains 277,387  words of the Italian language, including their inflec-
tion, used in order to express different grammatical categories such as tense, mood, 
person, gender, etc. For instance the dictionary contains the verb correre  (to run ) and 
its conjugations correvo , correrà , corressi , etc. 

Such set of words have been manually tagged with their prior polarities. The anno-
tation process started from the word set in the Ispell Italian dictionary3  used for spell-
checking purpose. Each word of the lexicon has been associated with a polarity in the 
range between -1  and +1 , where -1  indicates a strongly negative polarity while +1 
indicates a very positive polarity. Mildly negative or positive opinion polarity have 
been tagged, respectively, with values -0.5  and 0.5 . In addition terms with a neutral 
polarity have been tagged with a value equal to 0 . 

Two human annotators have been involved in the tagging process. The whole anno-
tation process took more than three months. 

Figure 1 shows the polarity distribution of all words of the Italian dictionary. We 
observed 162,000  words which have been tagged with a neutral sentiment polarity, 

                                                 
3 Ispell is a program that helps you to correct spelling and typographical errors in a file. When 
presented with a word that is not in the dictionary, ispell attempts to find near misses that might 
include the word you meant. 
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more than 70,000  with a negative polarity and more than 43,000  words tagged with a 
positive polarity. 

 Specifically words evoking a negative sentiment are divided in two sets, 22,651 
with a strongly negative polarity and 49,074  words with a fairly negative polarity. 
Similarly, in the case of words evoking a positive sentiment, we observed 6,739  
words with a strongly positive polarity and 36,688  words with a fairly positive polar-
ity. Table 1 shows in details the number of words detected for each polarity value to-
gether with the percentage of words detected in each group. Notice that more than 
40%  of words have been assigned to a polarity values, while 58%  of words have 
been assigned with a neutral polarity. 

3.2 Polarity Modifiers 

 An adjective is a word or set of words that modifies a noun or a pronoun. In most 
cases adjectives come before the word they modify. Some adjective can modify the 
polarity of a noun with a non neutral prior polarity. For example the adjective raro  
(rare ) can be used in composition with the adjective bellezza  (beauty ) to emphasize 
its positive meaning (a women with a rare beauty ). Similarly the adjective esiguo  
(scarse ) can be used in combination with the noun valore  (virtue ) changing its posi-
tive polarity in a negative sentiment (a man with scarse virtue ). 

An adverb is a word or set of words that modifies verbs, adjectives, or other ad-
verbs. Generally an adverb answers how, when, where, or to what extent an action is 
performed or an adjective is applicable. In this context some adverbs are able to mod-
ify the sentiment evoked by a verb or by an adjective with non neutral polarity. For 
instance the adverb appena  (barely ) can be associated with an adjective in order to 
reduce its positive (or negative) polarity, e.g. barely succeed  or barely enthusiast . 
Similarly the adverb davvero  (truly ) can be associated with an adjective like sor-
prendente  (amazing ) in order to emphasize its positive meaning. 

In our work we collected a set of more than 200  polarity modifier which have been 
manually tagged with a proportionality factor ranging between -2.0  and +2.0 . When a 
term with a non neutral polarity x  is associated with a modifier with a proportionality 
factor y , we obtain a compound term whose polarity can be estimated as (x  y) . De-
pending on the value of such factor we can distinguish four different kind of modifiers. 
 
Emphasize. These modifiers have a proportionality factor greater than +1.0  and, 
when associated with a term having a non neutral polarity, evokes a sentiment which 
is stronger than the original one. thus they emphasize a positive (or negative) polarity 
value. 

 
proprio bello  (really beautiful) = +1.6  +1.0 = +1.6 
alquanto sgradevole  (rather unpleasant) = +1.5  -1.0 = -1.5 
grande valore  (great virtue) = +1.8  +0.5 = +0.9 
 

Moderate.  These modifiers have a proportionality factor greater than 0 and smaller 
than +1.0. When associated with a term having a non neutral polarity, they result in a 
compound term with a moderated sentiment which is weaker than the original one. 
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appena vinto  (just gained) = +0.7  +0.5 = +0.35 
mediamente brutto  (ugly on average) = +0.5  -1.0 = -0.5 
breve successo  (brief success) = +0.6  +0.5 = +0.3 
 

Reverse and moderate. This kind of modifiers have a proportionality factor greater 
than -1.0  and smaller than 0.0 . When they are associated with a term having a non 
neutral polarity, evoke a sentiment which is in opposition with the original sentiment, 
but has an absolute value of polarity which is smaller than the original polarity. 

 
poco ragionevole  (little reasonable) = -0.7  +0.5 = -0.35 
esiguo dolore  (scarse pain) = -0.7  -1.0 = +0.7 
limitato guadagno  (limited benefit) = -0.8  +1.0 = -0.8 
 

Reverse and emphasize.  These modifiers have a proportionality factor smaller or 
equal than -1.0  and, if associated with a term having a non neutral polarity, evokes a 
sentiment which is stronger than the original one but with an opposite polarity. 

 
insufficiente prestigio  (insufficient prestige) = -1.2  1.0 = -1.2 
minime scomodità  (minimal inconvenience) = -1.0  -0.5 = +0.5 
scarso valore  (lacking virtue) = -1.2  +0.5 = -0.6 

4 A Web Based Frontend 

 We implemented a simple web based tool in order to access the lexical resource 
presented in this paper. In order to allow a blind review of the paper we uploaded the 
tool in a free hosting server. The tool is accessible at the url  

 
http://www.dmi.unict.it/~faro/sabrina 

 
The tool allows to evaluate single Italian terms or compound terms, where words 

with a non neutral polarity are associated with modifiers, as described above. More-
over each example which you can find above in the paper is tagged with an anchor 
which redirect the reader to the web page of the tool in order to evaluate the sentiment 
value of the example itself. 

If a whole sentence is tested by the tool, containing more than one term with non 
neutral prior polarity, then a straightforward approach is applied in order to compute 
an approximation of the polarity of the whole sentence. In particular the set of polarity 
values contained in the sentence is arranged from the lowest one to the highest one 
and the median of such a set is taken as the polarity value of the whole sentence. Spe-
cifically the median is the number separating the higher half of the set of polarity val-
ues from the lower half. If there is an even number of polarity values, then there is no 
single middle value. Int this cases the median is usually defined to be the mean of the 
two middle values. 
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5 Conclusions 

In this paper we presented a new lexical resource for the Italian language contain-
ing more than 277.000 words which have been manually tagged with their prior polar-
ity values, i.e. a value indicating the sentiment which such words evoke when are out 
of any context. We also provide an additional lexical resource containing a set of 
more than 200 polarity modifiers which can be used for inducing the sentiment polar-
ity of Italian compound terms. Future works will be devoted to test the effectiveness 
of such resource in opinion mining task. 
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Abstract. This article presents the methods and findings of a computational 
transformation of orthography within two Slavic language pairs (Czech-Polish 
and Bulgarian-Russian) on different word sets. The experiment aimed at inves-
tigating to what extent these closely related languages are mutually intelligible, 
concentrating on their orthographies as linguistic interfaces to the written text. 
Besides analyzing orthographic similarity, the aim was to gain insights into the 
applicability of rules based on traditional linguistic assumptions for the pur-
poses of language modelling. 

1 Introduction 

We are interested in identifying the mechanisms by which languages en- and de-
code information, focusing on the phenomenon of receptive multilingualism observed 
within the Slavic language group. We are framing the problem as one of (statistical) 
language model adaptation from a L1 to L2, incorporating results from traditional 
approaches and comparative historical linguistics. The key idea is that comprehension 
of a text in an unknown, but related language should be better when the language 
model adapted for processing the unknown language exhibits relatively low average 
surprisal.  

This contribution elaborates on an inter-language orthographic transformation ex-
periment1 for which, based on orthographic features, different mappings between 
selected language pairs were tested. Two language pairs for which a relatively high 
degree of mutual intelligibility could be expected were chosen: Czech-Polish (CS-PL, 

                                                           
1 The experiment took place in the initial phase of the INCOMSLAV project at Saarland Uni-
versity, launched in October 2014. Morphology, lexis and syntax will be subject to later project 
phases. 
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both West Slavic, and both using the Latin script with a number of additional diacritic 
signs) and Bulgarian-Russian (BG-RU, South and East Slavic, both using Cyrillic 
script). The probably best known and most obvious example for such orthographic 
correspondences of characters between Czech and Polish are v:w, h:g, č:cz, etc.  

We collected and systematized traditional linguistic assumptions about how Slavic 
languages developed from a reconstructed parent language – referred to as Proto-
Slavic or Common Slavic – to the modern varieties of Czech, Polish, Bulgarian and 
Russian (Schenker 1993). Although this parent language existed before any Slavic 
script appeared, historical linguistics was able to reconstruct how and in which stages 
the individual modern varieties moved from unity to diversity in the course of several 
centuries (Carlton 1991:9). The key features which reflect this development and now 
distinguish one Slavic language from another had their origin in Proto-Slavic times. 
Thus, there is a common base in the linguistic systems of the individual languages.  

The existing orthography rules can be considered a result of both linguistic and 
sociolinguistic factors (Sgall 1987; Penzl 1987). Orthography does not only follow 
phonological, morphological and diacritical principles. It is also the syntactic, seman-
tic, etymological and historical factors that are reflected in the graphematic represen-
tation of a language. Apart from this, written language is subject to manipulation by 
rules and laws created by governing authorities (e.g. in the process of spelling re-
forms). Kučera explains the specific character of Cyrillic as follows: 

 
"Like Glagolitic and unlike the Latin alphabet, Cyrillic was a script customized to 
the contemporaneous Slavic languages, with a highly efficient and systematic one-
to-one correspondence between its graphemes and the Slavic set of phonemes. 
[…] [T]here have been few exceptions from the correspondence, a fact that was 
in marked contrast with the widespread use of digraphs in the systems based on 
the Latin alphabet. Thus, there was significantly more asymmetry, and conse-
quently more looseness in the relation of the Slavic phonemes to the Latin graph-
emes than in their relation to Cyrillic graphemes." (Kučera 2009:74) 

2 Experimental Setup 

Parallel contemporary vocabulary lists were analysed in terms of their ortho-
graphic similarity and the applicability of the correspondence patterns that are as-
sumed in comparative Slavic linguistics. The objective of our transformation experi-
ment was, in the first place, to validate (confirm or reject) the traditional assumptions 
by applying orthographic correlation rules, which were formulated on the basis of 
historical comparative linguistics, on contemporary word material. As a result of this 
experiment it should be possible, with the help of the validated rules, to describe or 
even predict the written representation of units of the source language a target lan-
guage. If however the traditional assumptions appear not to hold for certain vocabu-
lary (sub-) sets, the relevant orthographic correlations were to be directly derived 
from the compiled parallel word lists. 
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2.1 Rules Inferred from Traditional Linguistic Assumptions 

To account for the historically conditioned variation between the languages under 
investigation, we first collected and worked out orthographic correlations reflecting 
the development of the sound systems as established in historical comparative lin-
guistics. We attempted to accommodate the main lines of the sound system evolution, 
from Common Slavic to individual modern Slavic languages, focusing on the follow-
ing aspects: (i) development of vowels and consonants, (ii) development of specific 
sound combinations, and (iii) the metathesis of liquids.   

The next step when designing the rule sets for the transformation experiment was 
a change of perspective, away from the perspective Common Slavic vs. all other to-
wards a comparison of language pairs. In the diachronically-based language-family-
oriented collection of correspondences2 there were 132 for CS-PL vs. 126 for BG-RU 
(i.e. h:g:г:г for CS-PL-BG-RU). A considerable number of these rules stated regular 
one-to-one correspondences for the respective language pairs, for example such rules 
as p:p for CS-PL and к:к for BG-RU. Consequently, only those rules were applied in 
the experiment that represent a mismatch between target and source language units 
(e.g. č:cz for CS-PL and ъ:у for BG-RU), so that only 81 rules for CS-PL and 48 
rules for BG-RU were applied to the word lists. This suggests a greater orthographic 
diversity between Czech and Polish than between the other two languages. Equal-to-
equal grapheme correspondences were not considered a transformation. Such a situa-
tion in fact represents a reading intercomprehension scenario in which equal graph-
emes are not expected to cause any additional surprisal for readers. The remaining 
transformation rules were then applied on parallel word lists and checked for their 
practical usability. 

Czech and Polish: Although both use the Latin script, they differ in their diacriti-
cal systems and the use of digraphs. While CS sibilants are usually represented by a 
single character, PL uses digraphs instead, at least for hard sibilants, e.g. č:cz. In the 
experimental setup, a letter is defined as an independent unit including diacritics, if 
applicable. For the purposes of the current automatic transformation, digraphs are 
considered two characters, e.g., PL sz and CS ch. There are 15 Czech letters (á, č, ď, 
é, ě, í, ň, ř, š, ť, ú, ů, v3, ý, ž) that do not exist in PL, and 9 Polish letters (ą, ć, ę, ł, ń, ś, 
w4, ż, ź) that do not exist in CS. Still, these letters are expected to be legible for read-
ers of the respective target language (i.e. by ignoring diacritical signs) and thus 
should not impair reading intercomprehension to a large extent – especially when the 
actual phonetic representation is similar (e.g. á vs. a, although this fact might not be 
known to the reader). 

Bulgarian and Russian both use the Cyrillic script and there are only slight dif-
ferences in the alphabets. The use of digraphs and diacritics is rare in the Cyrillic-
based systems. The Russian letters э, ё5, ы do not appear in BG. Generally, one can 

                                                           
2 The analyses were primarily collected from Bidwell (1963), Žuravlev et al. (1974-2012) and 
Vasmer (1973). 
3  The letter v is only used in Polish texts when it is part of a named entity or a foreign word. 
4  The letter w is only used in Czech texts when it is part of a named entity or a foreign word. 
5 The letter ё is used mostly only in dictionaries and schoolbooks. 
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distinguish two important orthographic differences: unfamiliar graphemes represent-
ing unfamiliar or familiar phonemes (these differences only apply to a limited number 
of graphemes between BG and RU); graphemes that seem to be familiar, but in fact 
the grapheme-phoneme correspondences are different (e.g. ъ and щ in BG are pro-
nounced [ə] and [ʃt], while their RU counterpart ъ has no phonetic, but an ortho-
graphic function (hard sign) and щ is pronounced [ʃʧ], different rules for the reduc-
tion of unstressed vowels etc.). 

2.2 Word Sets Used 

In the initial phase of INCOMSLAV, we started collecting all parallel word lists 
and corpora that were available to us in digital format. The main inspiration and the 
first source of Slavic word lists was the EuroComSlav website. We decided to test the 
traditional assumptions on word lists instead of full texts in order to focus on the or-
thographic level only and thus exclude such influences that are caused by individual 
morphological rules from our analysis as far as possible.  

Verb forms play a special role in the BG-RU comparison. While we analyzed in-
finitive verb forms in the CS-PL lists, we had to replace all infinitives in the BG-RU 
lists with the 3rd person present tense forms of the verbs. This was done to ensure a 
more appropriate comparison of RU with BG, as there are no infinitive forms in BG 
and 1st person forms are highly irregular, which makes them less suitable for an or-
thographic comparison. 

There were three types of basic parallel lists available for all four languages: a 
Pan-Slavic list and a list of internationalisms on the EuroComSlav website, and the 
online version of the Swadesh list. The EuroComSlav lists had to be corrected for 
errors. All lists were slightly modified, as formal non-cognates (i.e. CS-PL mnoho – 
wiele [many/much]; BG-RU ние – мы [we]) were removed and formal cognates, if 
existing, were added to the lists, where the pairs consisted of non-cognates (i.e. 
mężczyzna [man] substituted by mąż [husband] in CS-PL muž – mąż; звяр [beast] 
added to its RU formal cognate зверь [animal, beast] for the BG-RU pair зверь – 
звяр). Focusing only on the formal aspect of the lexemes, we did not take semantics 
into account. This explains the variation in the amount of words for each list in each 
language pair. 

 
Table 1. Word sets with numbers of items 

 Total number of items  
Word list CS-PL BG-RU 
Swadesh list 212 227 
Panslavic list 455 447 
Internationalism list 262 261 
Homonyms 1553 X 
Dictionary 80963 X 
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For the CS-PL pair we implemented two additional large word lists which might 
have a statistically more representative effect: A set of homonyms, extracted from 
(Szałek and Nečas 1993), as well as an open-source digital version of a CS-PL dic-
tionary containing more than 80,0000 lexemes (Kazojć 2010). 

2.3 Method 

If all characters in a word of L1 are the same as in the corresponding word in L2, 
the word was automatically listed as input identical. If there is a mismatch of one or 
more positions in the word pair, the computer tries to apply one or more rules from 
the transformation rule set. If all characters in a word of L1 can be transformed with 
the help of the rules into the L2 word, the word pair is listed as correctly transformed. 
Rules for strings of characters take precedence over rules for single characters. There 
is also a chance that a unit from L1 corresponds to a different unit (character or string 
of characters) in L2, which is not part of the traditional linguistic rule set entered for 
this experiment. In such a case, these words are classified as untransformed.  

The computer code for the implementation of the orthographic transformation 
rules between language pairs (by Andrea Fischer and Ali Shah) is provided below. 

 
method Transformations(w, T) 
-------------- 
input: a word w from language L1, the set T of admissible transformation rules 
output: all L2 transformations of w obtained by applying rules from T 
-------------- 
 
transformations = {(w, [])} // initialize the set of transformations with just 
the word and no applied transformations 
 
new_variants = {} // temporary iteration variable 
 
while True: // iterate until no new transformations are found anymore 

for t in T: // process each transformation rule 
for variant, path in transformations: // apply this rule to 
all currently known variants of the original word 

for new_word, application_pattern in Transform-
WithRule(variant, t): // apply the rule t in each com-
bination of positions where it is applicable 

new_variants.add((new_word, path, applica-
tion_pattern)) // record the new variant plus 
the path by which it was obtained 

if words(new_variants) + words(transformations) == 
words(transformations): // after processing all rules, see if there are 
any new words 

break // stop iteration if no new words were found 
else: 

transformations.addAll(new_variants) // record the newfound 
transformations and continue iterating otherwise 

 
return transformations 
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2.6 Results of the Implementation of the Rules 

Fig. 1. Results of implementation for both language pairs 
 Swadesh Pan-Slavic Internationalisms 
CS 
to 
PL 

   
BG 
to 
RU 

   
Legend:     input identical,     correctly transformed,     untransformed 
 
The most obvious finding is the different proportion of orthographically identical 

words in the language pairs (max.: 33.21 % for CS-PL vs. 62.45 % for BG-RU). The 
internationalism lists, consisting only of nouns, show the highest proportion of ortho-
graphically identical words in both pairs. An explanation for the low rate of identical 
words in the BG-RU Swadesh list is the high rate of morphological differences re-
flected in orthography, e.g. different endings of male adjectives and verb forms in 3rd 
person singular – here the orthographic rule set can be applied only in very few cases. 
However, the rule set works well for the CS-PL Swadesh list (best transformation rate 
of the experiment: 47.17 %). 

The Swadesh lists consist of a relatively high rate of verbs and adjectives and they 
are the only lists containing a number of pronouns, prepositions and numerals. The 
Pan-Slavic lists include nouns, verbs and adjectives. While for CS-PL the proportion 
of untransformed items is relatively constant throughout the three lists, the untrans-
formed part for BG-RU ranges from 64.32 % with the Swadesh list to 32.18 % with 
internationalisms. 

Tables 2a and 2b display the five most frequently used rules for each word set, 
given the rule from L1 to L2 along with the number showing how often this rule was 
applied in words that were classified as correctly transformed. Directly under the 
rules, one example word pair for which this rule holds is provided. 
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Table 2a. Most frequent transformation rules applied on the different lists 
Czech to Polish 

Swadesh Pan-Slavic Internat. Homonyms Dictionary 
t:ć,24 ý:y,45 á:a,15 v:w,307 v:w,991 
dát–dać dýně–dynia bál–bal věc–wiec kráva–krowa 
ý:y,21 v:w,42 e:a,12 ý:y,175 t:ć,663 
nový–nowy voda–woda linie–linia výlet–wylot prát–prać 
v:w,20 t:ć,37 v:w,8 t:ć,163 á:a,515 
dva–dwa bolet–boleć káva–kawa tma–ćma pára–para 
á:a,10 l:ł,24 í:e,5 á:a,142 e:a,353 
já–ja zlý–zły talíř–talerz čára–czara duše–dusza 
l:ł,9 h:g,20 l:ł,4 l:ł,111 ý:y,336 
teplý–ciepły hlava–głowa kanál–kanał látka–łatka dým–dym 
  rá:ra,4   
  rádio–radio   

 
CS-PL: The success of t:ć can be explained by the high rate of verb endings 

(morphological feature reflected in orthography) in all lists except in international-
isms, although this rule was originally inferred from the diachronically-based rule for 
deset - dziesięć. Another outstanding rule is ý:y which is due to a high rate of adjec-
tive endings in the lists, although this rule was originally derived from a historical 
correspondence in word stems. For some rules such as á:a and l:ł it may be assumed 
that they will not pose a problem to reading intercomprehension because the diacritics 
can be ignored. The v:w rule represents characters that would not appear in the other 
language. The success of applying these rules in this experiment depends strongly on 
their overall frequency of the individual characters in the word lists, i.e. there is a 
higher frequency of h:g in Pan-Slavic vocabulary relative to h:g in all other lists. The 
strongest tendencies for vowel changes are from e:a, from í:e, which both apply for 
noun endings. As a result, the findings reveal a strong applicability of rules that refer 
to endings, to letters that are not part of the inventory of one language and to letters 
that are only distinguished by the absence or presence of diacritical signs. 
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Table 2b. Most frequent transformation rules applied on the different lists 
Bulgarian to Russian 

Swadesh Pan-Slavic Internation. 
ъ:у,8 я:е,17 л:ль,9 
път–путь вяра–вера цел–цель 

я:е,7 ъ:у,10 и:ы,1 
цвят–цвет дъб–дуб музика–музыка 

и:ы,6 и:ы,10 н:нь,1 
ти–ты диня–дыня aмин–аминь 

е:я,6 е:я,9 р:рь,1 
език–язык ред–ряд календар–календарь 

е:о,4 е:ё,8 а:я,1 
езеро–озеро еж–ёж плаж–пляж 

 
BG-RU: The most frequent orthographic correspondences of the transformation 
experiment in the Swadesh and Pan-Slavic lists are between the orthographic 
representations of vowels: ъ:у; е:я; я:е; и:ы; e:o; е:ё. The orthographic differences 
could generally be explained, on the one hand, by the different development of the 
vowels from Common Slavic to the modern Slavic languages and, on the other hand, 
by subsequent spelling reforms in these languages with the aim to harmonize their 
writing system to the sound system, i.e.:  
ъ:у – explained by the different development of the back nasal vowel */ǫ/ of 
Common Slavic to /�/ in Bulgarian and to /u/ in Russian.  
е:я – also explained by the different development of the front nasal vowel */ȩ/ of 
Common Slavic to /е/ in Bulgarian and to /´a/ in Russian.  

The most frequent orthographic correspondences in the internationalism list, be-
sides the correlations of orthographic representations of the vowels a:я and и:ы, here 
concern the orthographic representation of consonants, e.g. л:ль, н:нь, р:рь, which 
can be explained by the difference between non-palatalized consonants in Bulgarian 
and palatalized consonants in Russian. It must be kept in mind, however, that most 
internationalisms in the list are borrowings from other languages and thus constitute a 
rather specific problem. Usually, in orthographies using Cyrillic the pronunciation of 
the borrowing may be preserved and the spelling may be changed to correspond to 
the orthographic rules of the borrowing language (Kučera 2009). Borrowings were 
generally handled in harmony with the phonological and morphological principles of 
each particular language, which could be presented by other orthographic correspon-
dences that are distinct from our diachronically-based transformation rules. This 
could be an explanation for the fact that only five of the transformation rules could be 
successfully applied on the internationalism list. However, there already is a high rate 
of identical words in this list. 

The overall results for both language pairs show that there are different princi-
ples in how the diachronically-based transformation rules work. For BG-RU, the re-
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sults confirm the validity of the rule set to a high degree for the reasons mentioned 
above. For CS-PL we found that the traditional rules were valid not only for word 
stems as explained in historical comparative research, but also for other parts of 
words, mainly endings. The rules do not only cover orthographic features, but also 
those morphological features to which the same rules apply. The words classified as 
correctly transformed were much lower in number for BG-RU. This could be ex-
plained by the fact that in the experiment, words in which there was only one unit that 
could not be transformed with the rule set, were sorted out by the program as untrans-
formed. For example the adjective pair тих (BG) vs. тихий (RU) could not be cor-
rectly transformed, because there is no rule saying ø [nothing] in BG corresponds to -
ий in RU – this would require a morphological rule set. 

The difference in the language pairs confirms the isolated position of Bulgarian in 
contrast to the other languages under focus, especially because of its morphology. 

3 Conclusions 

In the present application of diachronically-based orthographic transformation 
rules between the two language pairs CS-PL and BG-RU we tried to find out to what 
extent traditional linguistic assumptions explain the differences between parallel word 
sets in the languages. The computational transformation experiment revealed that 
there are different percentages of orthographically identical words in both language 
pairs. For all word sets, the initial orthographic similarity is greater for BG and RU 
(max.: 62.45 % for internationalisms) than for CS and PL (max.: 33.21 % for interna-
tionalisms), which suggests a greater degree of mutual intelligibility for BG-RU by 
the presence of internationalisms than in the other pair. 

For those words in the parallel lists that were not identical in terms of orthogra-
phy, a rule set of inter-language orthographic correspondences was applied. For the 
CS-PL combination, these orthographic transformation rules led to better results – 
44.84 % for the Pan-Slavic vocabulary list, while the results for BG-RU in the same 
list amounted to only 23.04 %. The low success rate for the BG-RU orthographic 
transformations suggests a high influence of morphological differences between these 
languages (zero endings for BG adjectives, different verb endings, etc.). While inves-
tigating the CS-PL orthographic correspondences, we found that the morphological 
features are reflected in the respective orthographies to a similar degree and are there-
fore comparable. This suggests that knowledge of those orthographic correspondence 
rules might improve reading comprehension, e.g., for a Czech native speaker reading 
Polish. The knowledge of orthographic correspondences between BG and RU, in 
contrast, is not expected to lead to such large improvement in reading comprehension 
as in the other pair, when the respective other language is unknown to the reader. 
However, knowledge of morphological cross-language correspondence principles 
might be much more helpful here. 
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4 Outlook 

Orthography was subject to the first of six work packages in the INCOMSLAV 
project. In the near future a series of on-line reading (inter-)comprehension experi-
ments with Slavic native speakers is planned to validate the findings of this and other 
computational experiments. The results from the experiments with human readers will 
be discussed in the framework of several other computational estimations and calcu-
lations of similarity and distance. The upcoming project phases will cover morphol-
ogy, lexis and syntax. On the linguistic level, more similarities and discrepancies in 
the subsystems of the languages will be investigated. Both the nature of the phenom-
ena and the strength of the effects are relevant at these levels.  

For the information-theoretic part of the project, the aim will be to adapt feature-
based n-gram language models for cross-language use via latent space and similarity. 
The information-theoretical results will then be analyzed again from a linguistic point 
of view and interpreted together with the results of reading intercomprehension ex-
periments with Slavic native speakers. 

References 

Bidwell, C.E. (ed) Slavic Historical Phonology in Tabular Form. Mouton & Co., The 
Hague, 1963  

Carlton, T. R. (ed) Introduction to the Phonological History of the Slavic Languages. 
Slavica Publishers, INC. Columbus, Ohio, 1991  

Kučera, K. (2009) The Orthographic Principles in the Slavic Languages: Pho-
netic/Phonological. In: Kempgen, S., Kosta, P., Berger, T., Gutschmidt, K. (eds.) The 
Slavic Languages. An International Handbook of their Structure, their History and their 
Investigation. Volume 1. Walter de Gruyter, Berlin/New York, pp. 70-76  

Penzl, H. (1987) Zur alphabetischen Orthographie als Gegenstand der Sprachwissenschaft. 
In: Luelsdorff, P. A. (ed.): Orthography and Phonology. John Benjamins Publishing Com-
pany, Amsterdam/Philadelphia, pp. 225-238  

Schenker, A.M. (1993) Proto-Slavonic. In: Comrie, B., Corbett, G.G. (eds.) The  

Slavonic Languages, Routledge, London and New York, pp. 60-125  

Sgall, P. (1987) Towards a Theory of Phonemic Orthography. In: Luelsdorff, P. A. (ed.) 
Orthography and Phonology. John Benjamins Publishing Company, Amster-
dam/Philadelphia, pp. 1-31 

Dictionaries  

Szałek, M.; Nečas, J. (eds) Czesko-Polska Homonymia. Poznań, 1993  

Vasmer, M (ed) Etimologičeskij slovar' russkogo jazyka. Moscow, 1973  

Žuravlev, A. F., et al. Etimologičeskij slovar' slavjanskich jazykov. Vyp. 1-37. Moscow, 
1974-2012  



An Orthography Transformation Experiment 
 

125 

Online documents  

Swadesh list:  
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Slavic_languages.  
Accessed 22/04/2015  

Pan-Slavic list:  
http://www.eurocomslav.de/kurs/pwslav.htm. Accessed 22/04/2015  

Internationalism list:  
http://www.eurocomslav.de/kurs/iwslav.htm. Accessed 22/04/2015  

Kazojć, J. (2010) Otwarty słownik czesko-polski V.03.2010 (c)  
http://www.slowniki.org.pl/czesko-polski.pdf. Accessed 22/04/2015 



 

 



Hierarchies of Terms on the Euromaidan Events: 
Networks and Respondents' Perception 

D. Lande, A. Snarskii, E. Yagunova, E. Pronoza and S. Volskaya 

Institute for Information Recording NAS of Ukraine, Kiev, Ukraine 
NTUU “Kiev Polytechnic Institute”, Kiev, Ukraine 

{dwlande, asnarskii}@gmail.com 
Saint-Petersburg State University, Saint-Petersburg, Russian Federation 

{iagounova.elena, katpronoza, svetlana.volskaya}@gmail.com 

Abstract. In this paper we describe the construction methodology of a network 
of natural terms hierarchy on the base of the subject arrays of news texts. The 
proposed method is illustrated using automatic processing of the full texts of the 
articles about the Euromaidan events in Kiev. 

1 Introduction 

Constructing a large domain-specific ontology is a challenging problem. The on-
tology development process includes such a task as terms learning, but the problem of 
effective unsupervised terms learning is unsolved, and the problem of the links identi-
fication and automatic network construction is also still open. 

Another important task is the formal estimation of the number of new topics in data 
streams. Appearance of new topics naturally causes appearance of the series of terms 
marking new themes. A linguist dealing with news texts has to know the specifics of 
different segments of media data streams. Particularly, sometimes one can correlate 
separate news topics with the subjects of whole data flows using lexical features. 

In this paper we propose an approach to the construction of a terminological basis 
for interrelated events, which are described in the messages of electronic media, and 
for separate subjects of data flows for a certain time period. We also consider some 
principles of making a language network on the base of the selected terms. Correla-
tion of unit message terminology with general subject terminology can be considered 
as a formal criterion of event relevance to the considered subject area (sequence of 
events). 

The problems of events modeling and analyzing their perception by the informants 
have been an object of many recent studies [0]. Unsupervised terms extraction task is 
also widely addressed by the researchers. Terms extraction methods are either statis-
tics-based (e.g., clustering [0]), or use fine-grained linguistic analysis (e.g., depend-
ency parsing [0]). Some researchers also employ external sources of knowledge like 
Wikipedia or Wordnet [0]. Our method is statistics-based. It is fast and language in-
dependent and does not demand any linguistic resources. 
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2 Data 

The data for our research consists of news reports about the confrontation in Kiev 
in 2013-2014, which was caused by so-called Euromaidan. We collected more than 
200 thousand of news reports from RuNet web sites during the period from November 
2013 till March 2014. 

First of all, it is necessary to choose a text corpus for the further analysis. To col-
lect the data for our research, we use “InfoStream” – a system of content monitoring. 
To retrieve the news reports which are relevant to the subject area we make the fol-
lowing request: 

(maydan|euromaidan)&( beat|dispersal|storm| 
berkut|molotov|titushk|was killed) & lang.RUS. 

The collected corpus consists of more than 200 thousand of news reports. On the base 
of the corpus the dynamics of subject reports should be identified. The mode «Dy-
namics of events» in the system of content monitoring «InfoStream» allows getting 
information about the number of published articles which are relevant to the request 
for a certain time period. This information is presented in the form of a plot (see 
Fig. 1). 
 

 

 
Fig. 1. Dynamics of the number of publications which are relevant to the request 

 
The time dynamics data is normalized for each day, and time series is built. Each 

relative frequency value in this series equals the ratio of the number of subject reports 
per day to the number of all the reports per day. It allows us to ignore weekly perio-
dicity in the number of subject reports. 

After we get the information about publications dynamics, the critical points 
should be identified. These critical points are the local maxima of time series in the 
dynamics of publications [3].  

On the base of these results three dates were chosen (2013.11.30, 2014.01.22, 
2014.02.19) as critical points for the sequence of events under consideration. 
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After the critical points are selected, it is necessary to extract the main sequences 
of subject reports which are relevant to the request for the necessary dates (see Fig. 2). 
It is also done via the system of content monitoring. 

 

 
Fig. 2. Main subject concatenations for necessary dates 

3 Construction method of Network of Natural Term Hierarchy 

3.1 Extraction of Terms for Ontology 

For the further analysis we build three corpora from the reports. Each corpus corre-
sponds to one of the three found critical points; lexical features of each corpus are the 
objects of monitoring.  

Preprocessing of these corpora includes division of text into fragments (separate 
reports, paragraphs, sentences, words, bigrams, and trigrams), deletion of analpha-
betical symbols and cutting off inflections – stemming (this is an option). 

Then each term from the text (unigram, bigram or trigram) receives an estimation 
of its «discriminant power», represented by TF-IDF. The preliminary technique de-
scription was published in [12]. 

3.2 Construction of Terms Hierarchy 

The process of network constructing is based on using semantically important text 
elements. To identify these elements in the text one can use methods described in [0], 
[0] and [0]. An advantage of a network built on the base of important text elements, 
pivot words and words combinations is that such a network embraces separate knowl-
edge domains. 

Extracting of the terms for a network is done using the feature based on the dis-
criminant power of words. Nevertheless one should remember that this feature cannot 
guarantee high quality of ontology. Most frequent words from the chosen subject 
area, which have low discriminant power (for example, the words “Ukraine”, “Mai-
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dan”, “Protest” in the news corpus about Euromaidan in Kiev) could be the most im-
portant ones for the network construction. 

The content of the corpora is the base of the future network. In this work we con-
sider a natural network. We call the network natural due to the fact that its construc-
tion does not include any special methods of semantic analysis (including part of 
speech tagging). All the relations in this network are determined by the positions of 
the words and word combinations, which are extracted from the texts of statistically 
significant size. Terms hierarchy which is built completely automatically is the base 
for the further automatic ontology construction with experts. 

In our work we propose a method of constructing terms hierarchy which includes 
the construction of a compactified horizontal visibility graph (CHVG) and terms 
weights recalculation (for unigrams, bigrams and trigrams) [0]. 

 
Language network is built in three stages using the CHVG algorithm. 
1. In the first stage nodes sequence is marked on the horizontal axis. Each node 

corresponds to the word in the order it appears in the text. On the vertical axis TF-IDF 
weights are put. Vertical lines are drawn between these TF-IDF values and their pro-
jections on the x-axis. 

2. In the second stage a traditional horizontal visibility graph is built [0]. An edge 
is drawn between every two nodes if these nodes are in “direct visibility”. “Direct 
visibility” of the nodes means that they can be connected by a horizontal line which 
does not intersect any vertical line in the plot. 

3. In the third stage we merge the nodes with the same words. The edges of such 
nodes are also merged. Such procedure is called graph compactification. Node 
weights are recalculated. TF-IDF values are replaced with the corresponding node 
degrees in CHVG. Finally, the terms are sorted according to their new CHVG weights 
in descending order. Stop words are excluded from further analysis. In this paper a list 
of stop words is formed using following web-resources: 
https://code.google.com/p/stop-words/downloads/list, 
http://www.ranks.nl/stopwords/, http://www.textfixer.com/resources/common-
english-words.txt. 

Experts estimate the size of the network (let us denote it by N). Then N unigrams, 
N bigrams and N trigrams with the largest CHVG weights are selected. The network 
is constructed using the obtained terms. In this network nodes identify terms and links 
represent part-whole relations between the terms. Fig. 3 presents an example of the 
terms hierarchy construction. Different geometric figures denote different words in 
Fig. 3. Unigrams are grouped in the first column, while bigrams and trigrams are in 
the second and third columns respectively. If a unigram belongs to some bigram, or a 
bigram is a part of some trigram, an arrow is drawn between them (denoting a part-
whole relation). The set of terms together with the links between them forms a three-
level Natural Network of Terms Hierarchy [0], [12]. 
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Fig. 3. Relations construction in a three-level hierarchy  

3.3 Visualization of Network of Natural Term Hierarchy 

We select top-20 Euromaidan terms (unigrams, bigrams and trigrams) with the 
largest CHVG weights to visualize the network we build. These terms are presented 
in Table 1. 

Table 1. Top-20 Euromaidan terms with the largest CHVG weights 

Unigram Bigram Trigram 

Украина /Ukraine/ Виктор Янукович /Viktor 
Yanukovych/ 

президент Виктор Янукович 
/President Viktor Yanukovych/ 

Киев /Kiev/ центр Киева /Centre of Kiev/ 
сотрудники правоохранительных 
органов / law enforcement officials 
/ 

власть /Power/ верховная Рада /Verkhovna Rada/ 
введение чрезвычайного 
положения /Introduction of state of 
emergency/ 

страна /State/ улица Грушевского /Grushevskogo 
Street/ 

батькивщина Арсений Яценюк 
/Batkivshina Arseniy Yatsenyuk/ 

Янукович 
/Yanukovych/ 

президент Украины /President of 
Ukraine/ 

Олимпийские игры Сочи 
/Olympic Games Sochi/ 

Майдан /Maidan/ Майдан Независимости /Maidan Ne-
zavisimosti (Independence Square)  / 

Глава Администрации 
Президента /Head of presidential 
administration/ 

люди /People/ партия регионов /The party of regions/ фракция партии регионов /The 
party of regions fraction/ 

милиция /Police/ пресс-служба /Press centre/ штаб национального 
сопротивления /National resistance 
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Unigram Bigram Trigram 
headquarters/ 

Беркут /Berkut/ Арсений Яценюк /Arseniy Yatsenyuk/ действие благодати Пресвятой 
/Holy Grace effect/ 

оппозиция 
/Opposition/ 

Михайловская Площадь
/Mikhailovskaya Square/ 

Майдан Незалежности Киев 
/Maidan Nezalezhnosti  Kiev / 

президент 
/President/ 

лидеры оппозиции /Opposition lead-
ers/ 

страницы социальных сетей 
/Social network pages/ 

Яценюк / Yat-
senyuk/ 

разгон Евромайдана /Euromaidan 
dispersal/ 

УДАР Виталий Кличко /UDAR 
Vitali Klitschko/ 

украинский 
/Ukrainian/ 

объявление перемирия /Armistice 
announcement/ 

Германия Франция 
Великобритания /Germany France 
UK/ 

Евромайдан 
/Euromaidan/ Виталий Кличко /Vitali Klitschko/ улица Грушевского Киев 

/Grushevskogo Street Kiev/ 

штурм /Attack/ Майдан Незалежности /Maidan 
Nezalezhnosti  / 

офис партии регионов /Office of 
the party of regions/ 

акция /Act/ акция протеста /Act of protest/ михайловская площадь киев 
/Mikhailovskaya Square Kiev/ 

здание /Building/ правый сектор /Right Sector/ силовой разгон евромайдана 
/Military dispersal of Euromaidan/ 

активист /Activist/ огнестрельное оружие /Firearms/ беркут внутренние войска /Berkut 
the internal troops/ 

МВД /Ministry of 
Internal Affairs/ 

правоохранительные органы /Law 
machinery/ 

премьер николай азаров /Premiere 
Mykola Azarov/ 

площадь /Square/ штурм зачистка /Attack cleanup/ мирная акция протеста /Peaceful 
protest act/ 

улица /Street/ штурм майдана /Attack of Maidan/ здание верховной рады 
/Verkhovna Rada building/ 

Грушевского 
/Grushevskogo/ 

внутренние войска /The internal 
troops/ 

законная власть Украины 
/Ukraine’s legitimate government/ 

лидер /Leader/ применение силы /Use of force/ лидер партии УДАР /Leader of 
UDAR party/ 

 
Finally when the terms hierarchy network is constructed, we visualize it using 

Gephi tool (https://gephi.org). To load the network into a database we represent it by 
an incidence matrix in “.csv” format. 

4 Results 

To illustrate the final network we present a small fragment of 20 terms (20+20+20 
in total) in Fig. 4. 

It can be noticed that the words in large print (Киев / Kiev, президент / president, 
Майдан / Maidan) in Fig. 4 are the topmost terms from Table 1. These words repre-
sent the nodes with the highest weights. Unigram nodes are connected with bigram 
and trigram nodes, and bigram nodes are connected with trigram ones. Arc thickness 
is proportional to the joint frequency of the terms (i.e., n-grams) it unites. 
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Fig. 4. Euromaidan Natural Network of Terms Hierarchy example (20+20+20)  

 
We should also consider a larger Euromaidan network fragment (200+200+200), 

which is presented in Fig. 5. In Fig. 5 it can be seen that in spite of the large density of 
this fragment the terms “Киев” / Kiev and “Майдан” / Maidan remain in large print. 
Meanwhile the unigram “Президент” / President is replaced by the term “Беркут” / 
Berkut. It can be explained by the fact that the unigram “Беркут” / Berkut has higher 
weight than “Президент” / President. 

After experimenting with networks of different sizes we deduced that node degree 
distribution (for outgoing links only) follows power law ( ( )p k Ckα= ). It means that 
such networks are scale-free (see Fig. 4). Power coefficient α  varies from 2.1 to 2.3 
for networks of different sizes (e.g., from 20+20+20 to 500+500+500) that in general 
complies with Language Networks structure [0]. 

 



D. Lande, A. Snarskii, E. Yagunova, E. Pronoza, S. Volskaya 134 

 
Fig. 5. Larger network fragment (200+200+200) visualized using Gephi 

It also turned out that according to the proposed algorithm one node can have 5 in-
going links at most (for the network in our example, see Fig. 4). Single words (uni-
grams) have 0 ingoing links, bigrams – 2 ingoing links at most and trigrams – 5 ingo-
ing links at most (with 3 links inherited from each word of a trigram and other 2 in-
herited from the two bigrams a trigram consists of). Top-20 nodes with the largest 
ingoing degrees for the 200+200+200 network of natural terms hierarchy are pre-
sented in Table 2. 

Table 2. Top-20 nodes with the largest ingoing degree 

Outgoing 
degree 

Node 

5 участники акции протеста /Protest act participants/ 
5 улица Грушевского Киев /Grushevskogo Street Kiev/ 
5 (президент) Украины Виктор Янукович /(President of) Ukraine Viktor

Yanukovych/ 
5 силовой разгон Евромайдана /Military dispersal of Euromaidan/ 
5 мирная акция протеста /Peaceful protest act/ 
5 глава администрации президента /Head of presidential administration/ 
5 фракция партии регионов /The party of regions fraction/ 
5 бойцы спецподразделения Беркут /Berkut special units/ 
5 Батькивщина Арсений Яценюк /Batkivshina Arseniy Yatsenyuk/ 
4 администрация президента Украины /Ukrainian Presidential administration/ 
4 здание Верховной Рады /Verkhovna Rada building/ 
4 здания центра Киева /Buildings of the centre of Kiev/ 
4 Верховная Рада Украины /Verkhovna Rada of Ukraine/ 
4 УДАР Виталий Кличко /UDAR Vitali Klitschko/ 
4 сотрудники спецподразделения Беркут /Berkut officers/ 
4 сотрудники правоохранительных органов /Law machinery officers/ 
4 силовой разгон митингующих /Military dispersal of meeting participants/ 
4 политический кризис Украина /Political crisis Ukraine/ 
4 применение силы сторонами /Use of force by the parties/ 
4 пресс-служба МВД /Press centre of Ministry of Internal Affairs/ 
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The nodes with the largest ingoing degree are also semantically the most important 
ones. They include the following word combinations: “участники акции протеста” 
/Protest act participants/; “улица Грушевского Киев” /Grushevskogo Street Kiev/; 
“силовой разгон Евромайдана” /Military dispersal of Euromaidan/; “мирная акция 
протеста” /Peaceful protest act/; “бойцы спецподразделения Беркут” /Berkut spe-
cial units/. 

CHVG values are calculated for single subjects as well, and the network is con-
structed for them. In Fig. 6 three network examples are shown. Their interrelation 
network is given in Fig. 7. 

Our assumptions regarding the importance of the selected events for network con-
structing were confirmed during the experiments with informants. Each informant 
was given a standard instruction: “Remember the recent events in the world. Write 
down 10-15 words which are best to describe these events”. More than 40 informants 
were questioned [11].  

In Table 3 the results of the experiments with informants are shown. In spite of the 
fact that the informants were not asked to describe the events in Ukraine, the majority 
of them still speak about the Euromaidan events. 

Table 3. Significance of the selected events (results of public opinion poll) 

% Events. Informants under 30 ages  % Events. Informants of 30 ages and older 

39 The joining of Crimea to the Rus-
sian Federation 

24 Disturbances in Maidan 
58 Winter Olympic Games in Sochi (Russia), the 

joining of Crimea to the Russian Federation 

18 Olympic Games in Sochi 40 Disturbances in Maidan 
33 Referendum in Crime 

23 Excellent results of the Russian team in Winter 
Olympic Games 14 

Excellent results of the Russian
team in the Winter Olympic Games, 
Referendum in Crimea, Sanctions 
against Russia, Civil war in Ukraine 20 Civil war in Ukraine, Sanctions against Russia 

12 Murders of civilian residents in 
Ukraine 13 Murders of civilian residents in Ukraine, War in 

the East of Ukraine 

8 
Beginning of combat operations in 
the Donetsk republic, Escape of 
Yanukovich from the country 

8 

Escape of Yanukovich from the country, Begin-
ning of combat operations in the Donets republic, 
Revolution in Ukraine, Deceitful propaganda in 
Russian media, Little green men in Crimea, Crisis 
in Ukraine 

 
It is important to note that all the informants were divided into two groups accord-

ing to their age. People of older age turn out to be quite critical while estimating the 
events of Euromaidan. On the other hand, one can find a large number of appraisal 
words in the answers of the younger group. 

To confirm that the keywords and word combinations which we got as terms dur-
ing the process of network construction are really semantically important for our 
theme we conducted another experiment with informants. We asked them to define 
the subject which these keywords can be connected with. 
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There were 7 informants in total and all of them were sure that these keywords 
were extracted from the texts about the events of Euromaidan in Kiev.  

Such high level of agreement is caused by the high subject homogeneity of the 
corpus which we chose to analyze. In fact, all the texts within the corpus describe the 
same event. 

In Fig. 7 it is shown that a set of terms corresponds to each subject (a node identi-
fied with a date). The terms which take place on several different dates can be seen in 
the central part of the network while those which are more specific appear at the pe-
riphery. 

 

а b 

c 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Euromaidan network 
(20+20+20) (a – 2013.11.30, b – 
2014.01.22, c – 2014.02.19) 
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Central zone does not necessarily include all the terms from all the subjects – it is 
enough to include some portion of a subject’s terms, e.g., one half. The more terms 
the central zone of a subject includes, the closer its content is to the main events trend, 
and the more relevant it is. In our example the “2014.01.22” node is the most relevant 
to the general events trend (see Fig. 7). 

 
Fig. 7. Euromaidan terms interrelations for the three chosen dates 

 
We also propose a linguistic criterion of subject relevance: the more terms of a pa-

per are in the central zone of the term interrelation network the more relevant this 
subject is to the general events theme. In other words, subject relevance is propor-
tional to the number of its terms in the central zone of the term interrelation network. 

5 Conclusion 

As a result of the research: 
─ an algorithm of constructing a network of natural terms hierarchy based on corpus 

analysis is proposed; 
─ the algorithm is illustrated with the examples of a Euromaidan-related network; 
─ network of natural terms hierarchy appears to be scale-free while considering out-

going links; 
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─ programming tools for visualization of a network of natural terms hierarchy are 
introduced; 

─ the criterion of subject relevance to the event is proposed; 
─ the verification of this criterion according to the informants opinion is proposed. 

Language network, constructed according to the proposed method, can be used as 
1) a basis for ontology construction (e.g., for Ukrainian acts of protest theme), 2) a 
tool for database navigation and 3) a tool for organizing user prompts in information 
retrieval systems. 

Our future work includes constructing networks on the base of a less homogeneous 
corpus. We are already working on the improvement of the estimation of our results, 
involving more informants with more complex stratification (country, region, profes-
sion and so on). 
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